scholarly journals Permutation characters of finite groups of Lie type

1979 ◽  
Vol 27 (3) ◽  
pp. 378-384 ◽  
Author(s):  
David B. Surowski

AbstractLet g be a connected reductive linear algebraic group, and let G = gσ be the finite subgroup of fixed points, where σ is the generalized Frobenius endomorphism of g. Let x be a regular semisimple element of G and let w be a corresponding element of the Weyl group W. In this paper we give a formula for the number of right cosets of a parabolic subgroup of G left fixed by x, in terms of the corresponding action of w in W. In case G is untwisted, it turns out thta x fixes exactly as many cosets as does W in the corresponding permutation representation.

2012 ◽  
Vol 15 (5) ◽  
Author(s):  
R. Lawther

Abstract.Given either a simple algebraic group or a finite group of Lie type, of rank at least 2, and a maximal parabolic subgroup, we determine which non-trivial unipotent classes have the property that their intersection with the parabolic subgroup is contained within its unipotent radical. Such classes are rare; listing them provides a basis for inductive arguments.


Author(s):  
Indranil Biswas ◽  
Georg Schumacher

AbstractLet G be a simple linear algebraic group defined over an algebraically closed field k of characteristic p ≥ 0, and let P be a maximal proper parabolic subgroup of G. If p > 0, then we will assume that dimG/P ≤ p. Let ι : H ↪ G/P be a reduced smooth hypersurface in G/P of degree d. We will assume that the pullback homomorphism is an isomorphism (this assumption is automatically satisfied when dimH ≥ 3). We prove that the tangent bundle of H is stable if the two conditions τ(G/P) ≠ d and hold; here n = dimH, and τ(G/P) ∈ is the index of G/P which is defined by the identity = where L is the ample generator of Pic(G/P) and is the anti–canonical line bundle of G/P. If d = τ(G/P), then the tangent bundle TH is proved to be semistable. If p > 0, and then TH is strongly stable. If p > 0, and d = τ(G/P), then TH is strongly semistable.


2010 ◽  
Vol 53 (2) ◽  
pp. 218-222
Author(s):  
Indranil Biswas

AbstractLet P be a maximal proper parabolic subgroup of a connected simple linear algebraic group G, defined over ℂ, such that n := dimℂG/P ≥ 4. Let ι : Z ↪ G/P be a reduced smooth hypersurface of degree at least (n – 1) · degree(T(G/P))/n. We prove that the restriction of the tangent bundle ι*TG/P is semistable.


1971 ◽  
Vol 12 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Bhama Srinivasan

Let K be an algebraically closed field of characteristic ρ >0. If G is a connected, simple connected, semisimple linear algebraic group defined over K and σ an endomorphism of G onto G such that the subgroup Gσ of fixed points of σ is finite, Steinberg ([6] [7]) has shown that there is a complex irreducible character χ of Gσ with the following properties. χ vanishes at all elements of Gσ which are not semi- simple, and, if x ∈ G is semisimple, χ(x) = ±n(x) where n(x)is the order of a Sylow p-subgroup of (ZG(x))σ (ZG(x) is the centraliser of x in G). If G is simple he has, in [6], identified the possible groups Gσ they are the Chevalley groups and their twisted analogues over finite fields, that is, the ‘simply connected’ versions of finite simple groups of Lie type. In this paper we show, under certain restrictions on the type of the simple algebraic group G an on the characteristic of K, that χ can be expressed as a linear combination with integral coefficients of characters induced from linear characters of certain naturally defined subgroups of Gσ. This expression for χ gives an explanation for the occurence of n(x) in the formula for χ (x), and also gives an interpretation for the ± 1 occuring in the formula in terms of invariants of the reductive algebraic group ZG(x).


Author(s):  
G. I. Lehrer ◽  
T. Shoji

AbstractLet G be a connected reductive linear algebraic group over the complex numbers. For any element A of the Lie algebra of G, there is an action of the Weyl group W on the cohomology Hi(BA) of the subvariety BA (see below for the definition) of the flag variety of G. We study this action and prove an inequality for the multiplicity of the Weyl group representations which occur ((4.8) below). This involves geometric data. This inequality is applied to determine the multiplicity of the reflection representation of W when A is a nilpotent element of “parabolic type”. In particular this multiplicity is related to the geometry of the corresponding hyperplane complement.


2002 ◽  
Vol 34 (2) ◽  
pp. 165-173
Author(s):  
HARM DERKSEN

Suppose that H is a finite subgroup of a linear algebraic group, G. It was proved by Donkin that there exists a finite-dimensional rational representation of G whose restriction to H is free. This paper gives a short proof of this in characteristic 0. The author also studies more closely which representations of H can appear as a restriction of G.


1983 ◽  
Vol 27 (3) ◽  
pp. 361-379 ◽  
Author(s):  
G.I. Lehrer

Let G be a connected reductive algebraic group defined over a finite field k. The finite group G(k) of k-rational points of G acts on the spherical building B(G), a polyhedron which is functorially associated with G. We identify the subspace of points of B(G) fixed by a regular semisimple element s of G(k) topologically as a subspace of a sphere (apartment) in B(G) which depends on an element of the Weyl group which is determined by s. Applications include the derivation of the values of certain characters of G(k) at s by means of Lefschetz theory. The characters considered arise from the action of G(k) on the cohomology of equivariant sheaves over B(G).


2007 ◽  
Vol 10 ◽  
pp. 329-340 ◽  
Author(s):  
A.J.E Ryba

We construct two embeddings of finite groups into groups of Lie type. These embeddings have the interesting property that the finite subgroup acts irreducibly on a minimal module for the group of Lie type. We present our constructions as examples of a general method that obtains embeddings into groups of Lie type.


2010 ◽  
Vol 21 (12) ◽  
pp. 1633-1638
Author(s):  
INDRANIL BISWAS ◽  
GÜNTHER TRAUTMANN

We consider principal bundles over G/P, where P is a parabolic subgroup of a semi-simple and simply connected linear algebraic group G defined over ℂ. We prove that a holomorphic principal H-bundle EH → G/P, where H is a complex reductive group, and is homogeneous if the adjoint vector bundle ad (EH) is homogeneous. Fix a faithful H-module V. We also show that EH is homogeneous if the vector bundle EH ×H V associated to it for the H-module V is homogeneous.


Sign in / Sign up

Export Citation Format

Share Document