scholarly journals NORMALIZERS OF OPERATOR ALGEBRAS AND REFLEXIVITY

2003 ◽  
Vol 86 (2) ◽  
pp. 463-484 ◽  
Author(s):  
A. KATAVOLOS ◽  
I. G. TODOROV

The set of normalizers between von Neumann (or, more generally, reflexive) algebras $\mathcal{A}$ and $\mathcal{B}$ (that is, the set of all operators $T$ such that $T \mathcal{A} T^{\ast} \subseteq \mathcal{B}$ and $T^{\ast} \mathcal{B} T \subseteq \mathcal{A}$) possesses ‘local linear structure’: it is a union of reflexive linear spaces. These spaces belong to the interesting class of normalizing linear spaces, namely, those linear spaces $\mathcal{U}$ of operators satisfying $\mathcal{UU}^{\ast} \mathcal{U} \subseteq \mathcal{U}$ (also known as ternary rings of operators). Such a space is reflexive whenever it is ultraweakly closed, and then it is of the form $\mathcal{U} = \{T : TL = \phi (L) T$ for all $L \in \mathcal{L}\}$ where $\mathcal{L}$ is a set of projections and $\phi$ a certain map defined on $\mathcal{L}$. A normalizing space consists of normalizers between appropriate von Neumann algebras $\mathcal{A}$ and $\mathcal{B}$. Necessary and sufficient conditions are found for a normalizing space to consist of normalizers between two reflexive algebras. Normalizing spaces which are bimodules over maximal abelian self-adjoint algebras consist of operators ‘supported’ on sets of the form $[f = g]$ where $f$ and $g$ are appropriate Borel functions. They also satisfy spectral synthesis in the sense of Arveson.2000 Mathematical Subject Classification: 47L05 (primary), 47L35, 46L10 (secondary).

2014 ◽  
Vol 20 (1) ◽  
pp. 94-97
Author(s):  
Natasha Dobrinen

2017 ◽  
Vol 69 (3) ◽  
pp. 548-578 ◽  
Author(s):  
Michael Hartglass

AbstractWe study a canonical C* -algebra, 𝒮(Г,μ), that arises from a weighted graph (Г,μ), speci fic cases of which were previously studied in the context of planar algebras. We discuss necessary and sufficient conditions of the weighting that ensure simplicity and uniqueness of trace of 𝒮(Г,μ), and study the structure of its positive cone. We then study the *-algebra,𝒜, generated by the generators of 𝒮(Г,μ), and use a free differential calculus and techniques of Charlesworth and Shlyakhtenko as well as Mai, Speicher, and Weber to show that certain “loop” elements have no atoms in their spectral measure. After modifying techniques of Shlyakhtenko and Skoufranis to show that self adjoint elements x ∊ Mn(𝒜) have algebraic Cauchy transform, we explore some applications to eigenvalues of polynomials inWishart matrices and to diagrammatic elements in von Neumann algebras initially considered by Guionnet, Jones, and Shlyakhtenko.


2011 ◽  
Vol 13 (04) ◽  
pp. 643-657 ◽  
Author(s):  
S. ALBEVERIO ◽  
SH. A. AYUPOV ◽  
K. K. KUDAYBERGENOV ◽  
B. O. NURJANOV

The paper is devoted to local derivations on the algebra [Formula: see text] of τ-measurable operators affiliated with a von Neumann algebra [Formula: see text] and a faithful normal semi-finite trace τ. We prove that every local derivation on [Formula: see text] which is continuous in the measure topology, is in fact a derivation. In the particular case of type I von Neumann algebras, they all are inner derivations. It is proved that for type I finite von Neumann algebras without an abelian direct summand, and also for von Neumann algebras with the atomic lattice of projections, the continuity condition on local derivations in the above results is redundant. Finally we give necessary and sufficient conditions on a commutative von Neumann algebra [Formula: see text] for the algebra [Formula: see text] to admit local derivations which are not derivations.


2019 ◽  
Vol 72 (4) ◽  
pp. 988-1023
Author(s):  
Clayton Suguio Hida ◽  
Piotr Koszmider

AbstractA subset ${\mathcal{X}}$ of a C*-algebra ${\mathcal{A}}$ is called irredundant if no $A\in {\mathcal{X}}$ belongs to the C*-subalgebra of ${\mathcal{A}}$ generated by ${\mathcal{X}}\setminus \{A\}$. Separable C*-algebras cannot have uncountable irredundant sets and all members of many classes of nonseparable C*-algebras, e.g., infinite dimensional von Neumann algebras have irredundant sets of cardinality continuum.There exists a considerable literature showing that the question whether every AF commutative nonseparable C*-algebra has an uncountable irredundant set is sensitive to additional set-theoretic axioms, and we investigate here the noncommutative case.Assuming $\diamondsuit$ (an additional axiom stronger than the continuum hypothesis), we prove that there is an AF C*-subalgebra of ${\mathcal{B}}(\ell _{2})$ of density $2^{\unicode[STIX]{x1D714}}=\unicode[STIX]{x1D714}_{1}$ with no nonseparable commutative C*-subalgebra and with no uncountable irredundant set. On the other hand we also prove that it is consistent that every discrete collection of operators in ${\mathcal{B}}(\ell _{2})$ of cardinality continuum contains an irredundant subcollection of cardinality continuum.Other partial results and more open problems are presented.


1989 ◽  
Vol 32 (2) ◽  
pp. 317-327 ◽  
Author(s):  
Erik Christensen ◽  
Allan M. Sinclair

Milutin's Theorem states that if X and Y are uncountable metrizable compact Hausdorff spaces, then C(X) and C(Y) are isomorphic as Banach spaces [15, p. 379]. Thus there is only one isomorphism class of such Banach spaces. There is also an extensive theory of the Banach–Mazur distance between various classes of classical Banach spaces with the deepest results depending on probabilistic and asymptotic estimates [18]. Lindenstrauss, Haagerup and possibly others know that as Banach spaceswhere H is the infinite dimensional separable Hilbert space, R is the injective II 1-factor on H, and ≈ denotes Banach space isomorphism. Haagerup informed us of this result, and suggested considering completely bounded isomorphisms; it is a pleasure to acknowledge his suggestion. We replace Banach space isomorphisms by completely bounded isomorphisms that preserve the linear structure and involution, but not the product. One of the two theorems of this paper is a strengthened version of the above result: if N is an injective von Neumann algebra with separable predual and not finite type I of bounded degree, then N is completely boundedly isomorphic to B(H). The methods used are similar to those in Banach space theory with complete boundedness needing a little care at various points in the argument. Extensive use is made of the conditional expectation available for injective algebras, and the methods do not apply to the interesting problems of completely bounded isomorphisms of non-injective von Neumann algebras (see [4] for a study of the completely bounded approximation property).


2017 ◽  
Vol 29 (07) ◽  
pp. 1750020 ◽  
Author(s):  
Erkka Haapasalo ◽  
Juha-Pekka Pellonpää

We study completely positive (CP) [Formula: see text]-sesquilinear-form-valued maps on a unital [Formula: see text]-algebra [Formula: see text], where the sesquilinear forms operate on a module over a [Formula: see text]-algebra [Formula: see text]. We also study the cases when either one or both of the algebras are von Neumann algebras. Moreover, we assume that the CP maps are covariant with respect to actions of a symmetry group. This allows us to view these maps as generalizations of covariant quantum instruments. We determine minimal covariant dilations (KSGNS constructions) for covariant CP maps to find necessary and sufficient conditions for a CP map to be extreme in convex subsets of normalized covariant CP maps. As a special case, we study covariant quantum observables and instruments whose value space is a transitive space of a unimodular type-I group. Finally, we discuss the case of instruments that are covariant with respect to a square-integrable representation.


1992 ◽  
Vol 04 (spec01) ◽  
pp. 15-47 ◽  
Author(s):  
H.J. BORCHERS ◽  
JAKOB YNGVASON

The subject of the paper is an old problem of the general theory of quantized fields: When can the unbounded operators of a Wightman field theory be associated with local algebras of bounded operators in the sense of Haag? The paper reviews and extends previous work on this question, stressing its connections with a noncommutive generalization of the classical Hamburger moment problem. Necessary and sufficient conditions for the existence of a local net of von Neumann algebras corresponding to a given Wightman field are formulated in terms of strengthened versions of the usual positivity property of Wightman functionals. The possibility that the local net has to be defined in an enlarged Hilbert space cannot be ruled out in general. Under additional hypotheses, e.g., if the field operators obey certain energy bounds, such an extension of the Hilbert space is not necessary, however. In these cases a fairly simple condition for the existence of a local net can be given involving the concept of “central positivity” introduced by Powers. The analysis presented here applies to translationally covariant fields with an arbitrary number of components, whereas Lorentz covariance is not needed. The paper contains also a brief discussion of an approach to noncommutative moment problems due to Dubois-Violette, and concludes with some remarks on modular theory for algebras of unbounded operators.


1988 ◽  
Vol 40 (6) ◽  
pp. 1482-1527 ◽  
Author(s):  
Antony Wassermann

In the first paper of this series [17], we set up some general machinery for studying ergodic actions of compact groups on von Neumann algebras, namely, those actions for which . In particular we obtained a characterisation of the full multiplicity ergodic actions:THEOREM A. If α is an ergodic action of G on , then the following conditions are equivalent:(1) Each spectral subspace has multiplicity dim π for π in .(2) Each π in admits a unitary eigenmatrix in .(3) The W* crossed product is a (Type I) factor.(4) The C* crossed product of the C* algebra of norm continuity is isomorphic to the algebra of compact operators on a Hilbert space.


2010 ◽  
Vol 107 (5) ◽  
pp. 1838-1843 ◽  
Author(s):  
Liming Ge ◽  
Wei Yuan

A new class of operator algebras, Kadison–Singer algebras (KS-algebras), is introduced. These highly noncommutative, non-self-adjoint algebras generalize triangular matrix algebras. They are determined by certain minimally generating lattices of projections in the von Neumann algebras corresponding to the commutant of the diagonals of the KS-algebras. A new invariant for the lattices is introduced to classify these algebras.


Sign in / Sign up

Export Citation Format

Share Document