scholarly journals Kadison–Singer algebras: Hyperfinite case

2010 ◽  
Vol 107 (5) ◽  
pp. 1838-1843 ◽  
Author(s):  
Liming Ge ◽  
Wei Yuan

A new class of operator algebras, Kadison–Singer algebras (KS-algebras), is introduced. These highly noncommutative, non-self-adjoint algebras generalize triangular matrix algebras. They are determined by certain minimally generating lattices of projections in the von Neumann algebras corresponding to the commutant of the diagonals of the KS-algebras. A new invariant for the lattices is introduced to classify these algebras.

2014 ◽  
Vol 20 (1) ◽  
pp. 94-97
Author(s):  
Natasha Dobrinen

2019 ◽  
Vol 72 (4) ◽  
pp. 988-1023
Author(s):  
Clayton Suguio Hida ◽  
Piotr Koszmider

AbstractA subset ${\mathcal{X}}$ of a C*-algebra ${\mathcal{A}}$ is called irredundant if no $A\in {\mathcal{X}}$ belongs to the C*-subalgebra of ${\mathcal{A}}$ generated by ${\mathcal{X}}\setminus \{A\}$. Separable C*-algebras cannot have uncountable irredundant sets and all members of many classes of nonseparable C*-algebras, e.g., infinite dimensional von Neumann algebras have irredundant sets of cardinality continuum.There exists a considerable literature showing that the question whether every AF commutative nonseparable C*-algebra has an uncountable irredundant set is sensitive to additional set-theoretic axioms, and we investigate here the noncommutative case.Assuming $\diamondsuit$ (an additional axiom stronger than the continuum hypothesis), we prove that there is an AF C*-subalgebra of ${\mathcal{B}}(\ell _{2})$ of density $2^{\unicode[STIX]{x1D714}}=\unicode[STIX]{x1D714}_{1}$ with no nonseparable commutative C*-subalgebra and with no uncountable irredundant set. On the other hand we also prove that it is consistent that every discrete collection of operators in ${\mathcal{B}}(\ell _{2})$ of cardinality continuum contains an irredundant subcollection of cardinality continuum.Other partial results and more open problems are presented.


2003 ◽  
Vol 86 (2) ◽  
pp. 463-484 ◽  
Author(s):  
A. KATAVOLOS ◽  
I. G. TODOROV

The set of normalizers between von Neumann (or, more generally, reflexive) algebras $\mathcal{A}$ and $\mathcal{B}$ (that is, the set of all operators $T$ such that $T \mathcal{A} T^{\ast} \subseteq \mathcal{B}$ and $T^{\ast} \mathcal{B} T \subseteq \mathcal{A}$) possesses ‘local linear structure’: it is a union of reflexive linear spaces. These spaces belong to the interesting class of normalizing linear spaces, namely, those linear spaces $\mathcal{U}$ of operators satisfying $\mathcal{UU}^{\ast} \mathcal{U} \subseteq \mathcal{U}$ (also known as ternary rings of operators). Such a space is reflexive whenever it is ultraweakly closed, and then it is of the form $\mathcal{U} = \{T : TL = \phi (L) T$ for all $L \in \mathcal{L}\}$ where $\mathcal{L}$ is a set of projections and $\phi$ a certain map defined on $\mathcal{L}$. A normalizing space consists of normalizers between appropriate von Neumann algebras $\mathcal{A}$ and $\mathcal{B}$. Necessary and sufficient conditions are found for a normalizing space to consist of normalizers between two reflexive algebras. Normalizing spaces which are bimodules over maximal abelian self-adjoint algebras consist of operators ‘supported’ on sets of the form $[f = g]$ where $f$ and $g$ are appropriate Borel functions. They also satisfy spectral synthesis in the sense of Arveson.2000 Mathematical Subject Classification: 47L05 (primary), 47L35, 46L10 (secondary).


Author(s):  
SERGIO ALBEVERIO ◽  
DEBASHISH GOSWAMI

We study the structure of the generator of a symmetric, conservative quantum dynamical semigroup with norm-bounded generator on a von Neumann algebra equipped with a faithful semifinite trace. For von Neumann algebras with Abelian commutant (i.e. type I von Neumann algebras), we give a necessary and sufficient algebraic condition for the generator of such a semigroup to be written as a sum of square of self-adjoint derivations of the von Neumann algebra. This generalizes some of the results obtained by Albeverio, Høegh-Krohn and Olsen1 for the special case of the finite-dimensional matrix algebras. We also study similar questions for a class of quantum dynamical semigroups with unbounded generators.


1984 ◽  
Vol 25 (1) ◽  
pp. 19-25 ◽  
Author(s):  
Charles A. Akemann

Recent work [2, 6] on subalgebras of matrix algebras leads naturally to the following situation. Let A be a C*-subalgebra of the C*-algebra B andM be a weakly closed *-subalgebra of the von Neumann algebra N. Consider the following Conditions.Condition 1. For every b≠ 0 in B there exists a ∈ A such that O≠ab ∈ A.Condition 2. For every b∈B there exists a ≠ 0 in A such that ab ∈ A.If we replace A by M and B by N in Conditions 1 and 2 we get von Neumann algebra versions which we shall call Condition 1'and Condition 2'. Clearly Condition 1 implies Condition 2, and both conditions suggest that A is some kind of weak ideal of B. This paper explores the extent to which this is true. The paper grew out of the author's attempts [1, 3] to generalize the Stone-Weierstrass theorem to C*-algebras.


1988 ◽  
Vol 40 (6) ◽  
pp. 1482-1527 ◽  
Author(s):  
Antony Wassermann

In the first paper of this series [17], we set up some general machinery for studying ergodic actions of compact groups on von Neumann algebras, namely, those actions for which . In particular we obtained a characterisation of the full multiplicity ergodic actions:THEOREM A. If α is an ergodic action of G on , then the following conditions are equivalent:(1) Each spectral subspace has multiplicity dim π for π in .(2) Each π in admits a unitary eigenmatrix in .(3) The W* crossed product is a (Type I) factor.(4) The C* crossed product of the C* algebra of norm continuity is isomorphic to the algebra of compact operators on a Hilbert space.


2018 ◽  
Vol 30 (4) ◽  
pp. 973-995 ◽  
Author(s):  
Wolfgang Rump

AbstractIt is shown that the projection lattice of a von Neumann algebra, or more generally every orthomodular latticeX, admits a natural embedding into a group{G(X)}with a lattice ordering so that{G(X)}determinesXup to isomorphism. The embedding{X\hookrightarrow G(X)}appears to be a universal (non-commutative) group-valued measure onX, while states ofXturn into real-valued group homomorphisms on{G(X)}. The existence of completions is characterized by a generalized archimedean property which simultaneously applies toXand{G(X)}. By an extension of Foulis’ coordinatization theorem, the negative cone of{G(X)}is shown to be the initial object among generalized Baer{{}^{\ast}}-semigroups. For finiteX, the correspondence betweenXand{G(X)}provides a new class of Garside groups.


1971 ◽  
Vol 126 (0) ◽  
pp. 227-243 ◽  
Author(s):  
Richard V. Kadison ◽  
John R. Ringrose

Sign in / Sign up

Export Citation Format

Share Document