scholarly journals Characterizing a vertex‐transitive graph by a large ball

2019 ◽  
Vol 12 (3) ◽  
pp. 705-743 ◽  
Author(s):  
Mikael de la Salle ◽  
Romain Tessera
Author(s):  
Ashwin Sah ◽  
Mehtaab Sawhney ◽  
Yufei Zhao

Abstract Does every $n$-vertex Cayley graph have an orthonormal eigenbasis all of whose coordinates are $O(1/\sqrt{n})$? While the answer is yes for abelian groups, we show that it is no in general. On the other hand, we show that every $n$-vertex Cayley graph (and more generally, vertex-transitive graph) has an orthonormal basis whose coordinates are all $O(\sqrt{\log n / n})$, and that this bound is nearly best possible. Our investigation is motivated by a question of Assaf Naor, who proved that random abelian Cayley graphs are small-set expanders, extending a classic result of Alon–Roichman. His proof relies on the existence of a bounded eigenbasis for abelian Cayley graphs, which we now know cannot hold for general groups. On the other hand, we navigate around this obstruction and extend Naor’s result to nonabelian groups.


10.37236/8890 ◽  
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Wei Jin ◽  
Ci Xuan Wu ◽  
Jin Xin Zhou

A 2-distance-primitive graph is a vertex-transitive graph whose vertex stabilizer is primitive on both the first step and the second step neighborhoods. Let $\Gamma$ be such a graph. This paper shows that either $\Gamma$ is a cyclic graph, or $\Gamma$ is a complete bipartite graph, or $\Gamma$ has girth at most $4$ and the vertex stabilizer acts faithfully on both the first step and the second step neighborhoods. Also a complete classification is given of such graphs  satisfying that the vertex stabilizer acts $2$-transitively on the second step neighborhood. Finally, we determine the unique 2-distance-primitive graph which is  locally cyclic.


2008 ◽  
Vol 85 (2) ◽  
pp. 145-154 ◽  
Author(s):  
PETER J. CAMERON ◽  
PRISCILA A. KAZANIDIS

AbstractThe core of a graph Γ is the smallest graph Δ that is homomorphically equivalent to Γ (that is, there exist homomorphisms in both directions). The core of Γ is unique up to isomorphism and is an induced subgraph of Γ. We give a construction in some sense dual to the core. The hull of a graph Γ is a graph containing Γ as a spanning subgraph, admitting all the endomorphisms of Γ, and having as core a complete graph of the same order as the core of Γ. This construction is related to the notion of a synchronizing permutation group, which arises in semigroup theory; we provide some more insight by characterizing these permutation groups in terms of graphs. It is known that the core of a vertex-transitive graph is vertex-transitive. In some cases we can make stronger statements: for example, if Γ is a non-edge-transitive graph, we show that either the core of Γ is complete, or Γ is its own core. Rank-three graphs are non-edge-transitive. We examine some families of these to decide which of the two alternatives for the core actually holds. We will see that this question is very difficult, being equivalent in some cases to unsolved questions in finite geometry (for example, about spreads, ovoids and partitions into ovoids in polar spaces).


Author(s):  
PABLO SPIGA

AbstractIn this paper, we prove that the maximal order of a semiregular element in the automorphism group of a cubic vertex-transitive graph Γ does not tend to infinity as the number of vertices of Γ tends to infinity. This gives a solution (in the negative) to a conjecture of Peter Cameron, John Sheehan and the author [4, conjecture 2].However, with an application of the positive solution of the restricted Burnside problem, we show that this conjecture holds true when Γ is either a Cayley graph or an arc-transitive graph.


10.37236/4626 ◽  
2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Daniel W. Cranston ◽  
Landon Rabern

We prove bounds on the chromatic number $\chi$ of a vertex-transitive graph in terms of its clique number $\omega$ and maximum degree $\Delta$. We conjecture that every vertex-transitive graph satisfies $\chi \le \max \{\omega, \left\lceil\frac{5\Delta + 3}{6}\right\rceil\}$, and we prove results supporting this conjecture. Finally, for vertex-transitive graphs with $\Delta \ge 13$ we prove the Borodin–Kostochka conjecture, i.e., $\chi\le\max\{\omega,\Delta-1\}$.


10.37236/4807 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Wuyang Sun ◽  
Heping Zhang

A graph of order $n$ is $p$-factor-critical, where $p$ is an integer of the same parity as $n$, if the removal of any set of $p$ vertices results in a graph with a perfect matching. 1-factor-critical graphs and 2-factor-critical graphs are well-known factor-critical graphs and bicritical graphs, respectively. It is known that if a connected vertex-transitive graph has odd order, then it is factor-critical, otherwise it is elementary bipartite or bicritical. In this paper, we show that a connected vertex-transitive non-bipartite graph of even order at least 6 is 4-factor-critical if and only if its degree is at least 5. This result implies that each connected non-bipartite Cayley graph of even order and degree at least 5 is 2-extendable.


10.37236/6190 ◽  
2017 ◽  
Vol 24 (2) ◽  
Author(s):  
Shuya Chiba ◽  
Jun Fujisawa ◽  
Michitaka Furuya ◽  
Hironobu Ikarashi

Let $\mathcal{H}$ be a family of connected graphs. A graph $G$ is said to be $\mathcal{H}$-free if $G$ does not contain any members of $\mathcal{H}$ as an induced subgraph. Let $\mathcal{F}(\mathcal{H})$ be the family of connected $\mathcal{H}$-free graphs. In this context, the members of $\mathcal{H}$ are called forbidden subgraphs.In this paper, we focus on two pairs of forbidden subgraphs containing a common graph, and compare the classes of graphs satisfying each of the two forbidden subgraph conditions. Our main result is the following: Let $H_{1},H_{2},H_{3}$ be connected graphs of order at least three, and suppose that $H_{1}$ is twin-less. If the symmetric difference of $\mathcal{F}(\{H_{1},H_{2}\})$ and $\mathcal{F}(\{H_{1},H_{3}\})$ is finite and the tuple $(H_{1};H_{2},H_{3})$ is non-trivial in a sense, then $H_{2}$ and $H_{3}$ are obtained from the same vertex-transitive graph by successively replacing a vertex with a clique and joining the neighbors of the original vertex and the clique. Furthermore, we refine a result in [Combin. Probab. Comput. 22 (2013) 733–748] concerning forbidden pairs.


10.37236/2087 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Jin-Xin Zhou ◽  
Yan-Quan Feng

A graph is vertex-transitive if its automorphism group acts transitively on its vertices. A vertex-transitive graph is a Cayley graph if its automorphism group contains a subgroup acting regularly on its vertices. In this paper, the cubic vertex-transitive non-Cayley graphs of order $8p$ are classified for each prime $p$. It follows from this classification that there are two sporadic and two infinite families of such graphs, of which the sporadic ones have order $56$,  one infinite family exists for every prime $p>3$ and the other family exists if and only if $p\equiv 1\mod 4$. For each family there is a unique graph for a given order.


Sign in / Sign up

Export Citation Format

Share Document