scholarly journals Horizontal cell responses in the retina of the larval tiger salamander.

1975 ◽  
Vol 251 (1) ◽  
pp. 145-165 ◽  
Author(s):  
A Lasansky ◽  
S Vallerga
1989 ◽  
Vol 61 (5) ◽  
pp. 1025-1035 ◽  
Author(s):  
X. L. Yang ◽  
S. M. Wu

1. The effects of prolonged light exposure, gamma-aminobutyric acid (GABA), and glycine on the horizontal cell (HC) light responses were studied in the superfused flat-mounted isolated retinas of the larval tiger salamander. 2. Under prolonged dark-adapted conditions, the time-to-peak of the HC light response was approximately 2-4 s, and after the termination of prolonged (6-8 min) light exposure, the time-to-peak became approximately 0.5-1 s. 3. This prolonged light-induced change in response rise time was not observed in either photoreceptors or bipolar cells, and thus the change in HC response rise time may occur postsynaptically in the HC membrane. 4. Application of 100 microM of GABA mimicked prolonged darkness and reversibly slowed down the HC response rise time, and application of 100 microM bicuculline mimicked prolonged light exposure and reversibly sped up the HC response rise time. 5. Glycine also slowed down the HC response rise course, but its effect was not observable until the concentration was raised to 1-3 mM. Strychnine did not exert any effect on HC responses when applied alone, but it could reverse the glycine actions. 6. The actions of glycine disappeared in the presence of bicuculline, indicating that the GABA and glycine pathways were probably not independent. Application of 5-10 mM glycine produced an increase of flow of preloaded 3H-GABA from the retina. 7. These results indicate that GABA may be the primary modulator that slows down the kinetics of the postsynaptic membrane proteins in the HCs. The extracellular concentration of GABA is probably high in prolonged darkness, and it is low after prolonged light exposure. Glycine, when applied at high dose, results in an increase of GABA release that slows down the HC response time course. 8. Prolonged darkness and light exposure appear to modulate the HC response in the time domain through GABA, and this change in HC response time course is probably responsible for shaping the bipolar cell responses and making the retinal signals more transient under light-adapted conditions.


1999 ◽  
Vol 16 (3) ◽  
pp. 503-511 ◽  
Author(s):  
R.A. SHIELLS ◽  
G. FALK

Simultaneous extracellular ERG and intracellular recordings from horizontal and ON-bipolar cells were obtained from the dark-adapted retina of the dogfish. The light intensity–peak response relation (IR) and time course of on-bipolar cell responses closely resembled that of the ERG b-wave, but only at low light intensities [<10 rhodopsin molecules bleached per rod (Rh*)]. Block of on-bipolar cell responses with 50 μM 2-amino-4-phosphonobutyrate (APB) abolished the b-wave and unmasked a vitreal-negative wave. Subtraction from the control ERG resulted in the isolation of a vitreal-positive ERG with an IR which matched that of on-bipolar cells over the full range of light intensities. The D.C. component of the ERG arises as a result of sustained depolarization of on-bipolar cells in response to long (>0.5 s) dim light stimuli, or following bright light flashes. The IR of horizontal cells and the vitreal-negative wave unmasked by APB could be matched by scaling at low light intensities (<5 Rh*). However, horizontal cell responses saturated at about 30 Rh*, while the vitreal-negative wave continued to increase in amplitude. The time course of horizontal cell membrane current with dim flashes could be matched to the rising phase of the vitreal-negative wave, assuming that the delay in generating the voltage response in horizontal cells is due to their long (100 ms) membrane time constant. Blocking post-photoreceptor activity resulted in a much smaller vitreal-negative wave than that unmasked by APB alone. We conclude that the b-wave arises from on-bipolar cell depolarization, while the leading edge of the a-wave is a composite of the change in extracellular voltage drop across the rod layer and a component (proximal PIII) reflecting a decrease in extracellular K+ as horizontal cell synaptic channels close with light.


1996 ◽  
Vol 36 (12) ◽  
pp. 1711-1719 ◽  
Author(s):  
Shiro Usui ◽  
Yoshimi Kamiyama ◽  
Hiroyuki Ishii ◽  
Hidetoshi Ikeno

1982 ◽  
Vol 79 (1) ◽  
pp. 131-145 ◽  
Author(s):  
J Toyoda ◽  
T Kujiraoka

Simultaneous intracellular recordings were made from a bipolar cell and a horizontal cell in the carp retina. The properties of the bipolar cell were studied while injecting current into the horizontal cell. Hyperpolarization of horizontal cells, irrespective of their type, elicited a hyperpolarizing response in on-center bipolar cells and a depolarizing response in off-center bipolar cells. Analyses of the ionic mechanisms of bipolar cell responses revealed that depolarization of horizontal cells simulated and hyperpolarization opposed the effect of central illumination. The effect of polarization was exerted in such a manner that each type of horizontal cells modified the transmission from those photoreceptors from which they receive main inputs. In on-center bipolar cells, for example, the L-type horizontal cells receiving inputs mainly from red cones modified the cone-bipolar transmission accompanied by a conductance change of K+ and/or Cl- channels, and the intermediate horizontal cells receiving inputs from rods modified the rod-bipolar transmission accompanied by a conductance change of Na+ channels. In off-center bipolar cells, the effect of polarization of any type of horizontal cells was mediated mainly by conductance changes of Na+ channels. Feedback mechanisms from horizontal cells to photoreceptors could explain these results reasonably well.


2000 ◽  
Vol 17 (1) ◽  
pp. 11-21 ◽  
Author(s):  
HAO WANG ◽  
KELLY M. STANDIFER ◽  
DAVID M. SHERRY

Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the retina and also appears to act as a trophic factor regulating photoreceptor development and regeneration. Although the tiger salamander is a major model system for the study of retinal circuitry and regeneration, our understanding of GABA receptors in this species is almost exclusively based on the results of physiological studies. Therefore, we have examined the pharmacological binding properties of GABAA receptors and their anatomical localization in the tiger salamander retina. Radioligand-binding studies showed that specific 3H-GABA binding to GABAA receptors was dominated by a single high-affinity binding site (Kd = 15.6 ± 6.9 nM). Specific binding of 3H-GABA was almost completely eliminated by muscimol (Ki = 105 ± 62 nM) and bicuculline (Ki = 14.3 ± 2.2 μM); however, SR-95531 only displaced about 40% of specific 3H-GABA binding (Ki = 35.0 ± 3.8 nM). These data indicate that there are at least two subtypes of GABAA receptors present in the salamander retina that can be distinguished by their antagonist binding properties: one sensitive to both bicuculline and SR-95531, and one sensitive to bicuculline but insensitive to SR-95531. Because localization of GABA receptors in the salamander retina by immunocytochemistry is problematic, GABAA receptors were localized by fluorescent ligand binding combined with immunocytochemical labeling for cell specific markers. Binding of fluorescently labeled muscimol to GABAA receptors was present in both plexiform layers and on photoreceptor cell bodies. GABAA receptors in the outer plexiform layer were localized to both photoreceptor terminals and horizontal cell processes.


1974 ◽  
Vol 240 (1) ◽  
pp. 177-198 ◽  
Author(s):  
M. G. F. Fuortes ◽  
E. J. Simon

1989 ◽  
Vol 93 (4) ◽  
pp. 695-714 ◽  
Author(s):  
M Kamermans ◽  
B W van Dijk ◽  
H Spekreijse

About half of the monophasic horizontal cells in carp retina receive input from both red- and green-sensitive cones. Since the horizontal cells feed back to cones, the color and feedback pathways result in wavelength- and intensity-dependent changes of the dynamics and of the receptive field amplitude profile of the horizontal cell responses. In this paper we present a quantitative model that describes adequately the color and spatial coding and the dynamics of the responses from monophasic horizontal cells in carp. Lateral feedback plays a distinct role in this model.


Sign in / Sign up

Export Citation Format

Share Document