Contribution of rod, on-bipolar, and horizontal cell light responses to the ERG of dogfish retina

1999 ◽  
Vol 16 (3) ◽  
pp. 503-511 ◽  
Author(s):  
R.A. SHIELLS ◽  
G. FALK

Simultaneous extracellular ERG and intracellular recordings from horizontal and ON-bipolar cells were obtained from the dark-adapted retina of the dogfish. The light intensity–peak response relation (IR) and time course of on-bipolar cell responses closely resembled that of the ERG b-wave, but only at low light intensities [<10 rhodopsin molecules bleached per rod (Rh*)]. Block of on-bipolar cell responses with 50 μM 2-amino-4-phosphonobutyrate (APB) abolished the b-wave and unmasked a vitreal-negative wave. Subtraction from the control ERG resulted in the isolation of a vitreal-positive ERG with an IR which matched that of on-bipolar cells over the full range of light intensities. The D.C. component of the ERG arises as a result of sustained depolarization of on-bipolar cells in response to long (>0.5 s) dim light stimuli, or following bright light flashes. The IR of horizontal cells and the vitreal-negative wave unmasked by APB could be matched by scaling at low light intensities (<5 Rh*). However, horizontal cell responses saturated at about 30 Rh*, while the vitreal-negative wave continued to increase in amplitude. The time course of horizontal cell membrane current with dim flashes could be matched to the rising phase of the vitreal-negative wave, assuming that the delay in generating the voltage response in horizontal cells is due to their long (100 ms) membrane time constant. Blocking post-photoreceptor activity resulted in a much smaller vitreal-negative wave than that unmasked by APB alone. We conclude that the b-wave arises from on-bipolar cell depolarization, while the leading edge of the a-wave is a composite of the change in extracellular voltage drop across the rod layer and a component (proximal PIII) reflecting a decrease in extracellular K+ as horizontal cell synaptic channels close with light.

1982 ◽  
Vol 79 (1) ◽  
pp. 131-145 ◽  
Author(s):  
J Toyoda ◽  
T Kujiraoka

Simultaneous intracellular recordings were made from a bipolar cell and a horizontal cell in the carp retina. The properties of the bipolar cell were studied while injecting current into the horizontal cell. Hyperpolarization of horizontal cells, irrespective of their type, elicited a hyperpolarizing response in on-center bipolar cells and a depolarizing response in off-center bipolar cells. Analyses of the ionic mechanisms of bipolar cell responses revealed that depolarization of horizontal cells simulated and hyperpolarization opposed the effect of central illumination. The effect of polarization was exerted in such a manner that each type of horizontal cells modified the transmission from those photoreceptors from which they receive main inputs. In on-center bipolar cells, for example, the L-type horizontal cells receiving inputs mainly from red cones modified the cone-bipolar transmission accompanied by a conductance change of K+ and/or Cl- channels, and the intermediate horizontal cells receiving inputs from rods modified the rod-bipolar transmission accompanied by a conductance change of Na+ channels. In off-center bipolar cells, the effect of polarization of any type of horizontal cells was mediated mainly by conductance changes of Na+ channels. Feedback mechanisms from horizontal cells to photoreceptors could explain these results reasonably well.


1996 ◽  
Vol 76 (3) ◽  
pp. 2005-2019 ◽  
Author(s):  
W. A. Hare ◽  
W. G. Owen

1. It is widely believed that signals contributing to the receptive field surrounds of retinal bipolar cells pass from horizontal cells to bipolar cells via GABAergic synapses. To test this notion, we applied gamma-aminobutyric acid (GABA) agonists and antagonists to isolated, perfused retinas of the salamander Ambystoma tigrinum while recording intracellularly from bipolar cells, horizontal cells, and photoreceptors. 2. As we previously reported, administration of the GABA analogue D-aminovaleric acid in concert with picrotoxin did not block horizontal cell responses or the center responses of bipolar cells but blocked the surround responses of both on-center and off-center bipolar cells. 3. Surround responses were not blocked by the GABA, antagonists picrotoxin or bicuculline, the GABAB agonist baclofen or the GABAB antagonist phaclofen, and the GABAC antagonists picrotoxin or cis-4-aminocrotonic acid. Combinations of these drugs were similarly ineffective. 4. GABA itself activated a powerful GABA uptake mechanism in horizontal cells for which nipecotic acid is a competitive agonist. It also activated, both in horizontal cells and bipolar cells, large GABAA conductances that shunted light responses but that could be blocked by picrotoxin or bicuculline. 5. GABA, administered together with picrotoxin to block the shunting effect of GABAA activation, did not eliminate bipolar cell surround responses at concentrations sufficient to saturate the known types of GABA receptors. 6. Surround responses were not blocked by glycine or its antagonist strychnine, or by combinations of drugs designed to eliminate GABAergic and glycinergic pathways simultaneously. 7. Although we cannot fully discount the involvement of a novel GABAergic synapse, the simplest explanation of our findings is that the primary pathway mediating the bipolar cell's surround is neither GABAergic nor glycinergic.


1999 ◽  
Vol 16 (5) ◽  
pp. 801-809 ◽  
Author(s):  
SILKE HAVERKAMP ◽  
WOLFGANG MÖCKEL ◽  
JOSEF AMMERMÜLLER

Electrophysiologically, color-opponent retinal bipolar cells respond with opposite polarities to stimulation with different wavelengths of light. The origin of these different polarities in the same bipolar cell has always been a mystery. Here we show that an intracellularly recorded and HRP-injected, red-ON, blue/green-OFF bipolar cell of the turtle retina made invaginating (ribbon associated) synapses exclusively with L-cones. Non-invaginating synapses resembling wide-cleft basal junctions were made exclusively with M-cones. Input from S-cones was not seen. From these results we suggest sign-inverting transmission from L-cones at invaginating synapses via metabotropic glutamate receptors, and sign-conserving transmission from M-cones at wide-cleft basal junctions via ionotropic receptors. To explain the pronounced blue sensitivity of the bipolar cell, computer simulations were performed using a sign-conserving input from a yellow/blue chromaticity-type (H3) horizontal cell. The response properties of the red-ON, blue/green-OFF bipolar cell could be quantitatively reproduced by this means. The simulation also explained the asymmetry in L- and M-cone inputs to the bipolar cell as found in the ultrastructural analysis and assigned a putative role to H3 horizontal cells in color processing in the turtle retina.


1981 ◽  
Vol 211 (1184) ◽  
pp. 373-389 ◽  

A serial section analysis of photoreceptor synaptic bases was undertaken in the clawed frog Xenopus laevis . The developmental period from tadpole stage 48 through metamorphosis was studied. Horizontal cells contacted rod and cone photoreceptors at ribbon synapses; the number of such contacts per receptor base was constant for rods, but increased for cones as a function-of developmental stage. In pre-metamorphic animals bipolar cells contacted receptors only through basal junctions; their number in cone bases increased dramatically during development but was unchanged in rod bases. A densitometric estimation of the cleft width of basal junctions showed that it ranged from 10 to 18 nm, but the junctions could not be divided reliably into the ‘wide’ and ‘narrow’ categories reported for other vertebrate species. Near metamorphic climax a new type of ribbon-related bipolar cell junction appeared. Gap junctions between horizontal cells and conventional chemical synapses of horizontal cell onto bipolar cell processes were first seen in mid-larval developmental stages.


The organization of the outer synaptic layer in the salamander retina was studied electronmicroscopically in serial sections of tissue prepared by conventional techniques or stained by the method of Golgi. Rod cell pedicles make ribbon junctions on cone cell processes, and rod cell processes invaginate cone pedicles without otherwise making any specialized contact with them. Horizontal cells make ribbon and distal junctions with the photoreceptor cell pedicles; a single horizontal cell may contact both rods and cones. Bipolar cells were observed to make either ribbon or basal junctions with the photoreceptor cell pedicles; in addition, certain processes believed to belong to bipolar cells make both ribbon and basal junctions with the same or different pedicles. A single bipolar cell may make contact with both rods and cones. Horizontal cells synapse on bipolar cell dendrites and on certain unidentified processes which in turn are also presynaptic to bipolar cells. Ascending branches of these processes invaginate deeply the rod and cone pedicles without otherwise engaging them in any junction. Horizontal cell processes are linked by two kinds of junctions: close membrane appositions, and contacts analogous to the distal junctions between horizontal cells and rod pedicles.


In a tank filled with a suspension of indian ink in tap water, a population of Daphnia magna will undergo a complete cycle of vertical migration when an overhead light source is cycli­cally varied in intensity. A ‘dawn rise’ to the surface at low intensity is followed by the descent of the animals to a characteristic maximum depth. The animals rise to the surface again as the light decreases, and finally show a typical midnight sinking. The light intensities at the level of the animals in this experiment are of the same order as those which have been reported in field observations; the time course of the movement also repeats the natural conditions in the field. The process is independent of the duration of the cycle and is related only to the variation in overhead light intensity. At low light intensity the movement of the animal is determined solely by positive photo-kinesis; the dawn rise is a manifestation of this, and is independent of the direction of the light. At high light intensities there is an orientation response which is superimposed upon an alternating positive (photokinetic) phase and a negative phase during which movement is inhibited. The fully oriented animal shows a special type of positive and negative phototaxis, moving towards the light at reduced light intensities and away from it when the light intensity is increased. In this condition it follows a zone of optimum light intensity with some exactness. Experiments show that an animal in this fully oriented condition will respond to the slow changes of intensity characteristic of the diurnal cycle, while being little affected by tran­sient changes of considerable magnitude.


1999 ◽  
Vol 115 (1) ◽  
pp. 3-16 ◽  
Author(s):  
D.A. Kraaij ◽  
H. Spekreijse ◽  
M. Kamermans

Cones in the vertebrate retina project to horizontal and bipolar cells and the horizontal cells feedback negatively to cones. This organization forms the basis for the center/surround organization of the bipolar cells, a fundamental step in the visual signal processing. Although the surround responses of bipolar cells have been recorded on many occasions, surprisingly, the underlying surround-induced responses in cones are not easily detected. In this paper, the nature of the surround-induced responses in cones is studied. Horizontal cells feed back to cones by shifting the activation function of the calcium current in cones to more negative potentials. This shift increases the calcium influx, which increases the neurotransmitter release of the cone. In this paper, we will show that under certain conditions, in addition to this increase of neurotransmitter release, a calcium-dependent chloride current will be activated, which polarizes the cone membrane potential. The question is, whether the modulation of the calcium current or the polarization of the cone membrane potential is the major determinant for feedback-mediated responses in second-order neurons. Depolarizing light responses of biphasic horizontal cells are generated by feedback from monophasic horizontal cells to cones. It was found that niflumic acid blocks the feedback-induced depolarizing responses in cones, while the shift of the calcium current activation function and the depolarizing biphasic horizontal cell responses remain intact. This shows that horizontal cells can feed back to cones, without inducing major changes in the cone membrane potential. This makes the feedback synapse from horizontal cells to cones a unique synapse. Polarization of the presynaptic (horizontal) cell leads to calcium influx in the postsynaptic cell (cone), but due to the combined activity of the calcium current and the calcium-dependent chloride current, the membrane potential of the postsynaptic cell will be hardly modulated, whereas the output of the postsynaptic cell will be strongly modulated. Since no polarization of the postsynaptic cell is needed for these feedback-mediated responses, this mechanism of synaptic transmission can modulate the neurotransmitter release in single synaptic terminals without affecting the membrane potential of the entire cell.


1974 ◽  
Vol 63 (1) ◽  
pp. 62-87 ◽  
Author(s):  
Frank S. Werblin

Test stimuli, presented at the center of the bipolar cell receptive field, spanning less than 2 log units of intensity, elicit the full range of graded response. The intensity range of test stimuli that elicits the graded response depends upon the background conditions. A higher range of log test intensities is required to elicit the graded bipolar response in the presence of surround backgrounds. But surround backgrounds can also serve to unsaturate the bipolar response and thereby increase sensitivity under certain conditions. The results suggest that a second stage of sensitivity-control is mediated by the horizontal cell system at the outer plexiform layer, concatenated with the effects of adaptation in the photoreceptors.


1994 ◽  
Vol 11 (6) ◽  
pp. 1193-1203 ◽  
Author(s):  
Chen-Yu Yang ◽  
Stephen Yazulla

AbstractThe presence of inhibitory bipolar cells in salamander retina was investigated by a comparative analysis of the distribution of glutamate- and GABA-immunoreactivities (GLU-IR; GABA-IR) using a postembedding immunocytochemical method. GLU-IR was found in virtually all photoreceptors, bipolar cells and ganglion cells, neuronal elements that transfer information vertically through the retina. GLU-IR also was found in numerous amacrine cells in the mid and proximal inner nuclear layer as well as in the cytoplasm of horizontal cells, while the nucleus of horizontal cells was either lightly labeled or not labeled at all. GLU-IR was found in the outer plexiform layer and intensely in the inner plexiform layer, in which there was no apparent sublamination. Forty-seven percent of Type IB bipolar cells in the distal inner nuclear layer and 13% of the displaced bipolar cells were GABA-IR. All bipolar cells were also GLU-IR, indicating that GABA-IR bipolar cells were a subset of GLU-IR bipolar cells rather than a separate population. About 12% of the Type IB bipolar cells were moderately GABA-IR and likely comprised a GABAergic subtype. GLU-IR levels in the presumed GABAergic bipolar cells were higher than in other purely GLU-IR bipolar cells suggesting that these GABA-IR bipolar cells are glutamatergic as well. All of the displaced bipolar cells were only lightly GABA-IR, indicating that displaced bipolar cells comprise a more homogeneous class of glutamatergic cell than orthotopic bipolar cells. GAD-IR co-localized with GABA-IR in orthotopic but not displaced bipolar cells, further supporting the idea that some orthotopic bipolar cells are GABAergic. A small proportion of bipolar cells in salamander retina contain relatively high levels of both GABA and glutamate. Co-release of these substances by bipolar cells could contribute to the “push-pull” modulation of ganglion cell responses.


Sign in / Sign up

Export Citation Format

Share Document