scholarly journals Lateral feedback from monophasic horizontal cells to cones in carp retina. II. A quantitative model.

1989 ◽  
Vol 93 (4) ◽  
pp. 695-714 ◽  
Author(s):  
M Kamermans ◽  
B W van Dijk ◽  
H Spekreijse

About half of the monophasic horizontal cells in carp retina receive input from both red- and green-sensitive cones. Since the horizontal cells feed back to cones, the color and feedback pathways result in wavelength- and intensity-dependent changes of the dynamics and of the receptive field amplitude profile of the horizontal cell responses. In this paper we present a quantitative model that describes adequately the color and spatial coding and the dynamics of the responses from monophasic horizontal cells in carp. Lateral feedback plays a distinct role in this model.

1990 ◽  
Vol 5 (6) ◽  
pp. 571-583 ◽  
Author(s):  
Wallace B. Thoreson ◽  
Dwight A. Burkhardt

AbstractThe effects of synaptic blocking agents on the antagonistic surround of the receptive field of cone photoreceptors were studied intracellular recording in the retina of hte turtle (Pseudemys scripta elegans) Illumination of a cone's receptive-field surround typically evoked a hybriid depolarizing response composed of two componests: (1) the graded synaptic feedback depolarization and (2) the prolonged depolarization a distinctive, intrinsic response of the cone. The locus of action of synaptic blocking agents was analyzed by comparing their effects on the light-evoked response of horizontal cells, the hybrid cone depolarization evoked by surround illumination, and the pure prolonged depolarization evoked by intracellular current injection.The excitatory amino-acid antagonists, d-O-phosphoserine (DOS) and kynurenic acid (KynA), suppressed the light responses of horizontal cells and eliminated the surround-evoked, hybrid cone depolarization without affecting the prolonged depolarization evoked by current injection. Cobalt at 5–10 mM suppressed horizontal cell responses and thereby eliminated surround-evoked cone depolarizations. Cobalt (5–10 mM) also blocked the current-evoked prolonged depolarization, suggesting that the intrinsic cone mechanisms responsible for the prolonged depolarization are likely to be calcium-dependent.Various GABA agonists and antagonists were found to have no effect on the surround-evoked depolarizations of cones. In contrast, a very low concentration of cobalt (0.5 mM) selectively suppressed the light-evoked feedback depolarization of cones without affecting horizontal cell responses or the current-evoked prolonged depolarization. Cobalt at 0.5 mM thus blocks the light-evoked action of the cone feedback synapse while sparing feedforward synaptic transmission from cones to horizontal cells. The implications of the present work for the possible neurotransmitters used at these synapses is discussed.


1996 ◽  
Vol 76 (3) ◽  
pp. 2005-2019 ◽  
Author(s):  
W. A. Hare ◽  
W. G. Owen

1. It is widely believed that signals contributing to the receptive field surrounds of retinal bipolar cells pass from horizontal cells to bipolar cells via GABAergic synapses. To test this notion, we applied gamma-aminobutyric acid (GABA) agonists and antagonists to isolated, perfused retinas of the salamander Ambystoma tigrinum while recording intracellularly from bipolar cells, horizontal cells, and photoreceptors. 2. As we previously reported, administration of the GABA analogue D-aminovaleric acid in concert with picrotoxin did not block horizontal cell responses or the center responses of bipolar cells but blocked the surround responses of both on-center and off-center bipolar cells. 3. Surround responses were not blocked by the GABA, antagonists picrotoxin or bicuculline, the GABAB agonist baclofen or the GABAB antagonist phaclofen, and the GABAC antagonists picrotoxin or cis-4-aminocrotonic acid. Combinations of these drugs were similarly ineffective. 4. GABA itself activated a powerful GABA uptake mechanism in horizontal cells for which nipecotic acid is a competitive agonist. It also activated, both in horizontal cells and bipolar cells, large GABAA conductances that shunted light responses but that could be blocked by picrotoxin or bicuculline. 5. GABA, administered together with picrotoxin to block the shunting effect of GABAA activation, did not eliminate bipolar cell surround responses at concentrations sufficient to saturate the known types of GABA receptors. 6. Surround responses were not blocked by glycine or its antagonist strychnine, or by combinations of drugs designed to eliminate GABAergic and glycinergic pathways simultaneously. 7. Although we cannot fully discount the involvement of a novel GABAergic synapse, the simplest explanation of our findings is that the primary pathway mediating the bipolar cell's surround is neither GABAergic nor glycinergic.


1999 ◽  
Vol 16 (3) ◽  
pp. 503-511 ◽  
Author(s):  
R.A. SHIELLS ◽  
G. FALK

Simultaneous extracellular ERG and intracellular recordings from horizontal and ON-bipolar cells were obtained from the dark-adapted retina of the dogfish. The light intensity–peak response relation (IR) and time course of on-bipolar cell responses closely resembled that of the ERG b-wave, but only at low light intensities [<10 rhodopsin molecules bleached per rod (Rh*)]. Block of on-bipolar cell responses with 50 μM 2-amino-4-phosphonobutyrate (APB) abolished the b-wave and unmasked a vitreal-negative wave. Subtraction from the control ERG resulted in the isolation of a vitreal-positive ERG with an IR which matched that of on-bipolar cells over the full range of light intensities. The D.C. component of the ERG arises as a result of sustained depolarization of on-bipolar cells in response to long (>0.5 s) dim light stimuli, or following bright light flashes. The IR of horizontal cells and the vitreal-negative wave unmasked by APB could be matched by scaling at low light intensities (<5 Rh*). However, horizontal cell responses saturated at about 30 Rh*, while the vitreal-negative wave continued to increase in amplitude. The time course of horizontal cell membrane current with dim flashes could be matched to the rising phase of the vitreal-negative wave, assuming that the delay in generating the voltage response in horizontal cells is due to their long (100 ms) membrane time constant. Blocking post-photoreceptor activity resulted in a much smaller vitreal-negative wave than that unmasked by APB alone. We conclude that the b-wave arises from on-bipolar cell depolarization, while the leading edge of the a-wave is a composite of the change in extracellular voltage drop across the rod layer and a component (proximal PIII) reflecting a decrease in extracellular K+ as horizontal cell synaptic channels close with light.


1982 ◽  
Vol 79 (1) ◽  
pp. 131-145 ◽  
Author(s):  
J Toyoda ◽  
T Kujiraoka

Simultaneous intracellular recordings were made from a bipolar cell and a horizontal cell in the carp retina. The properties of the bipolar cell were studied while injecting current into the horizontal cell. Hyperpolarization of horizontal cells, irrespective of their type, elicited a hyperpolarizing response in on-center bipolar cells and a depolarizing response in off-center bipolar cells. Analyses of the ionic mechanisms of bipolar cell responses revealed that depolarization of horizontal cells simulated and hyperpolarization opposed the effect of central illumination. The effect of polarization was exerted in such a manner that each type of horizontal cells modified the transmission from those photoreceptors from which they receive main inputs. In on-center bipolar cells, for example, the L-type horizontal cells receiving inputs mainly from red cones modified the cone-bipolar transmission accompanied by a conductance change of K+ and/or Cl- channels, and the intermediate horizontal cells receiving inputs from rods modified the rod-bipolar transmission accompanied by a conductance change of Na+ channels. In off-center bipolar cells, the effect of polarization of any type of horizontal cells was mediated mainly by conductance changes of Na+ channels. Feedback mechanisms from horizontal cells to photoreceptors could explain these results reasonably well.


1995 ◽  
Vol 12 (5) ◽  
pp. 985-999 ◽  
Author(s):  
Stewart A. Bloomfield ◽  
Daiyan Xin ◽  
Seth E. Persky

AbstractThe large receptive fields of retinal horizontal cells are thought to reflect extensive electrical coupling via gap junctions. It was shown recently that the biotinylated tracers, biocytin and Neurobiotin, provide remarkable images of coupling between many types of retinal neuron, including horizontal cells. Further, these demonstrations of tracer coupling between horizontal cells rivaled the size of their receptive fields, suggesting that the pattern of tracer coupling may provide some index of the extent of electrical coupling. We studied this question by comparing the receptive field and tracer coupling size of dark-adapted horizontal cells recorded in the superfused, isolated retina-eyecup of the rabbit. Both the edge-to-edge receptive field and space constants (λ) were computed for each cell using a long, narrow slit of light displaced across the retinal surface. Cells were subsequently labeled by iontophoretic injection of Neurobiotin. The axonless A-type horizontal cells showed extensive, homologous tracer coupling in groups greater than 1000 covering distances averaging about 2 mm. The axon-bearing B-type horizontal cells were less extensively tracer coupled, showing homologous coupling of the somatic endings in groups of about 100 cells spanning approximately 400 μm and a separate homologous coupling of the axon terminal endings covering only about 275 μm. Moreover, we observed a remarkable, linear relationship between the size of the receptive fields of each of the three horizontal cell endings and the magnitude of their tracer coupling. Our findings suggest that the extent of tracer coupling provides a strong, linear index of the magnitude of electrical current flow, as derived from receptive-field measures, across groups of coupled horizontal cells. These data thus provide the first direct evidence that the receptive-field size of horizontal cells is related to the extent of their coupling via gap junctions.


1995 ◽  
Vol 12 (4) ◽  
pp. 611-620 ◽  
Author(s):  
William H. Baldridge ◽  
Reto Weiler ◽  
John E. Dowling

AbstractThe responsiveness of luminosity-type horizontal cells, recorded intracellularly from isolated hybrid bass retinas, decreased after superfusion for 2 h in constant darkness. Responsiveness was subsequently increased (light-sensitized) up to 10-fold after exposure to several short (~0.5 min) periods of continuous illumination. The increase in horizontal cell responsiveness following light-sensitization was due to an increase of peak response amplitude rather than a reduction of peak response time. The increased responsiveness after light-sensitization was intensity-dependent with brighter sensitizing stimuli causing a greater increase than dimmer stimuli. The extent of LHC dark-suppression was affected by the time of day, being greater when induced during the night than during the day. However, there was no significant difference in horizontal cell responsiveness after light-sensitization in retinas studied during the night compared to those studied during the day The responsiveness of light-sensitized horizontal cells from isolated hybrid bass retinas was found to be suppressed by relatively brief periods of darkness. The responsiveness of horizontal cells, that were first light-sensitized, decreased by more than 50% following only 5 min of darkness. Suppression of light-sensitized horizontal cell responsiveness after such a short time in the dark has not been described in other teleost retinas. The suppression of light-sensitized horizontal cell responsiveness in hybrid bass retinas may be rapid in comparison to other teleosts.


2002 ◽  
Vol 19 (5) ◽  
pp. 621-632 ◽  
Author(s):  
O. BORNSTEIN ◽  
G. TWIG ◽  
J. BENDA ◽  
R. WEILER ◽  
I. PERLMAN

The resistances of the horizontal cell syncytium in the vertebrate retina are modulated in a time-dependent fashion during light stimulation. Therefore, the spatial properties of horizontal cells are expected to change with time after the illumination conditions are altered. This study was designed to investigate time- and intensity-dependent changes in the receptive-field properties of L1-type horizontal cells in the turtle Mauremys caspica. Photoresponses were elicited by monochromatic (650 nm) light stimuli of 2-s duration covering retinal spots of different radii. The length constants were derived from the relationships between amplitude and spot radius that were constructed for different time intervals after onset of the light stimulus. For a given stimulus intensity, the length constant transiently increased to a peak value and then slowly recovered to a plateau level. When the length constant was compared to the amplitude of the response to full-field illumination for the entire duration of the light stimulus, an ellipse-like curve was obtained indicating that for a given membrane potential, two different values of the length constant could be obtained. Dopamine considerably reduced the size of the receptive fields but did not affect the time-dependent changes in the length constant. These results indicate that changes in the membrane resistance underlie short-term modulation of the receptive-field properties of turtle L1-type horizontal cells after onset of a light stimulus.


1991 ◽  
Vol 97 (4) ◽  
pp. 819-843 ◽  
Author(s):  
M Kamermans ◽  
B W van Dijk ◽  
H Spekreijse

The spectral and dynamic properties of cone-driven horizontal cells in carp retina were evaluated with silent substitution stimuli and/or saturating background illumination. The aim of this study was to describe the wiring underlying the spectral sensitivity of these cells. We will present electrophysiological data that indicate that all cone-driven horizontal cell types receive input from all spectral cone types, and we will present evidence that all cone-driven horizontal cell types feedback to all spectral cone types. These two findings are the basis for a model for the spectral and dynamic behavior of all cone-driven horizontal cells in carp retina. The model can account for the spectral as well as the dynamic behavior of the horizontal cells. It will be shown that the strength of the feedforward and feedback pathways between a horizontal cell and a particular spectral cone type are roughly proportional. This model is in sharp contrast to the Stell model, where the spectral behavior of the three horizontal cell types is explained by a cascade of feedforward and feedback pathways between cones and horizontal cells. The Stell model accounts for the spectral but not for the dynamic behavior of the horizontal cells.


1983 ◽  
Vol 82 (5) ◽  
pp. 573-598 ◽  
Author(s):  
D Tranchina ◽  
J Gordon ◽  
R Shapley

Luminosity horizontal cells in the turtle retina respond approximately linearly to visual stimuli with contrast levels spanning a large part of the physiological range. We characterized the response properties of these cells under conditions of low photopic background illumination by measuring their spatial and temporal frequency transfer functions. Our experimental results indicate in two ways that, under these conditions, feedback from luminosity horizontal cells to cones does not play a major role in the mechanisms underlying the spatial and temporal tuning of horizontal cell responses. First, the shape of the spatial transfer function depended only weakly on the temporal frequency with which it was measured. Second, the shape of the temporal transfer function depended only weakly on the spatial frequency with which it was measured.


1991 ◽  
Vol 7 (5) ◽  
pp. 451-458 ◽  
Author(s):  
Osamu Umino ◽  
Yunhee Lee ◽  
John E. Dowling

AbstractInterplexiform cells are centrifugal neurons in the retina carrying information from the inner to the outer plexiform layers. In teleost fish, interplexiform cells appear to release dopamine in the outer plexiform layer after prolonged darkness that modulates the receptive-field size and light responsiveness of horizontal cells (Mangel & Dowling, 1985; Yang et al., 1988a, b). It has been proposed that interplexiform cells may also release dopamine upon steady illumination because horizontal cells' receptive fields shrink in the light (Shigematsu & Yamada, 1988). Here, we report the shrinkage of the receptive fields of horizontal cells seen in the presence of background illumination is not blocked by dopamine antagonists, indicating that dopamine does not underlie the receptive-field size changes observed during steady illumination. Flickering light, however, does appear to stimulate the release of dopamine from the interplexiform cells, resulting in a marked reduction of horizontal cell receptive-field size. Taken together, experiments on horizontal cells indicate that dopamine is released from interplexiform cells in the teleost retina after prolonged darkness and during flickering light, but that dopamine release from interplexiform cells during steady retinal illumination is minimal.


Sign in / Sign up

Export Citation Format

Share Document