feedback pathways
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 16)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Jamie Ward ◽  
Julia Simner

It is unclear whether synaesthesia is one condition or many and, this has implications for whether theories should postulate a single cause or multiple independent causes. Study 1 analyses data from a large sample of self-referred synaesthetes (N = 2925), who answered a questionnaire about N = 164 potential types of synaesthesia. Clustering and factor analysis methods identified around seven coherent groupings of synaesthesia, as well as showing that some common types of synaesthesia do not fall into any grouping at all (mirror-touch, hearing-motion, tickertape). There was a residual positive correlation between clusters (they tend to associate rather than compete). Moreover, we observed a “snowball effect” whereby the chances of having a given cluster of synaesthesia goes up in proportion to the number of other clusters a person has (again suggesting non-independence). Clusters tended to be distinguished by shared concurrent experiences rather than shared triggering stimuli (inducers). We speculate that modulatory feedback pathways from the concurrent to inducers may play a key role in the emergence of synaesthesia. Study 2 assessed the external validity of these clusters by showing that they predict performance on other measures known to be linked to synaesthesia.


2021 ◽  
Vol 15 ◽  
Author(s):  
Clement Abbatecola ◽  
Peggy Gerardin ◽  
Kim Beneyton ◽  
Henry Kennedy ◽  
Kenneth Knoblauch

Cross-modal effects provide a model framework for investigating hierarchical inter-areal processing, particularly, under conditions where unimodal cortical areas receive contextual feedback from other modalities. Here, using complementary behavioral and brain imaging techniques, we investigated the functional networks participating in face and voice processing during gender perception, a high-level feature of voice and face perception. Within the framework of a signal detection decision model, Maximum likelihood conjoint measurement (MLCM) was used to estimate the contributions of the face and voice to gender comparisons between pairs of audio-visual stimuli in which the face and voice were independently modulated. Top–down contributions were varied by instructing participants to make judgments based on the gender of either the face, the voice or both modalities (N = 12 for each task). Estimated face and voice contributions to the judgments of the stimulus pairs were not independent; both contributed to all tasks, but their respective weights varied over a 40-fold range due to top–down influences. Models that best described the modal contributions required the inclusion of two different top–down interactions: (i) an interaction that depended on gender congruence across modalities (i.e., difference between face and voice modalities for each stimulus); (ii) an interaction that depended on the within modalities’ gender magnitude. The significance of these interactions was task dependent. Specifically, gender congruence interaction was significant for the face and voice tasks while the gender magnitude interaction was significant for the face and stimulus tasks. Subsequently, we used the same stimuli and related tasks in a functional magnetic resonance imaging (fMRI) paradigm (N = 12) to explore the neural correlates of these perceptual processes, analyzed with Dynamic Causal Modeling (DCM) and Bayesian Model Selection. Results revealed changes in effective connectivity between the unimodal Fusiform Face Area (FFA) and Temporal Voice Area (TVA) in a fashion that paralleled the face and voice behavioral interactions observed in the psychophysical data. These findings explore the role in perception of multiple unimodal parallel feedback pathways.


2021 ◽  
Author(s):  
Alessandro R. Galloni ◽  
Zhiwen Ye ◽  
Ede Rancz

AbstractFeedforward and feedback pathways interact in specific dendritic domains to enable cognitive functions such as predictive inference and learning. Based on axonal projections, hierarchically lower areas are thought to form synapses primarily on dendrites in middle cortical layers, while higher-order areas are posited to target dendrites in layer 1 and in deep layers. However, the extent to which functional synapses form in regions of axo-dendritic overlap has not been extensively studied. Here, we use viral tracing in the visual cortex of mice to map brain-wide inputs to a genetically-defined population of layer 5 pyramidal neurons. Furthermore, we provide a comprehensive map of input locations through subcellular optogenetic circuit mapping. We show that input pathways target distinct dendritic domains with far greater specificity than appears from their axonal branching, often deviating substantially from the canonical patterns. Common assumptions regarding the dendrite-level interaction of feedforward and feedback inputs may thus need revisiting.


2021 ◽  
Vol 7 ◽  
Author(s):  
Lama A. Ammar ◽  
Mohamad I. Nahlawi ◽  
Nizar W. Shayya ◽  
Hilda E. Ghadieh ◽  
Nadim S. Azar ◽  
...  

Immunomodulatory approaches are defined as all interventions that modulate and curb the immune response of the host rather than targeting the disease itself with the aim of disease prevention or treatment. A better understanding of the immune system continues to offer innovative drug targets and methods for immunomodulatory interventions. Cardiorenal syndrome is a clinical condition that defines disorders of the heart and kidneys, both of which communicate with one another through multiple pathways in an interdependent relationship. Cardiorenal syndrome denotes the confluence of heart-kidney relationships across numerous interfaces. As such, a dysfunctional heart or kidney has the capacity to initiate disease in the other organ via common hemodynamic, neurohormonal, immunological, and/or biochemical feedback pathways. Understanding how immunomodulatory approaches are implemented in diabetes-induced cardiovascular and renal diseases is important for a promising regenerative medicine, which is the process of replacing cells, tissues or organs to establish normal function. In this article, after a brief introduction on the immunomodulatory approaches in diseases, we will be reviewing the epidemiology and classifications of cardiorenal syndrome. We will be emphasizing on the hemodynamic factors and non-hemodynamic factors linking the heart and the kidneys. In addition, we will be elaborating on the immunomodulatory pathways involved in diabetes-induced cardiorenal syndrome namely, RAS, JAK/STAT, and oxidative stress. Moreover, we will be addressing possible therapeutic approaches that target the former pathways in an attempt to modulate the immune system.


Author(s):  
Frederick Federer ◽  
Seminare Ta’afua ◽  
Sam Merlin ◽  
Mahlega S. Hassanpour ◽  
Alessandra Angelucci

ABSTRACTThe sensory neocortex consists of hierarchically-organized areas reciprocally connected via feedforward and feedback circuits. Feedforward connections shape the receptive field properties of neurons in higher areas within parallel streams specialized in processing specific stimulus attributes. Feedback connections, instead, have been implicated in top-down modulations, such as attention, prediction and sensory context. However, their computational role remains unknown, partly because we lack knowledge about rules of feedback connectivity to constrain models of feedback function. For example, it is unknown whether feedback connections maintain stream-specific segregation, or integrate information across parallel streams. Using selective viral-mediated labeling of feedback connections arising from specific cytochrome-oxidase stripes of macaque visual area V2, we find that feedback to the primary visual cortex (V1) is organized into parallel streams resembling the reciprocal feedforward pathways. These results suggest that functionally-specialized V2 feedback channels modulate V1 responses to specific stimulus attributes, an organizational principle that could extend to feedback pathways in other sensory systems.


2020 ◽  
Author(s):  
Shan Shen ◽  
Xiaolong Jiang ◽  
Federico Scala ◽  
Jiakun Fu ◽  
Paul Fahey ◽  
...  

AbstractNeocortical feedback is critical for processes like attention, prediction, and learning. A mechanistic understanding of its function requires deciphering its cell-type wiring logic. Recent studies revealed a disinhibitory circuit between motor and sensory areas in mice, where feedback preferentially targets vasointestinal peptide-expressing interneurons, in addition to pyramidal cells. It is unknown whether this circuit motif is a general cortico-cortical feedback organizing principle. Combining multiple simultaneous whole-cell recordings with optogenetics we found that in contrast to this wiring rule, feedback between the hierarchically organized visual areas (lateral-medial to V1) preferentially activated somatostatin-expressing interneurons. Functionally, both feedback circuits temporally sharpened feed-forward excitation by eliciting a transient increase followed by a prolonged decrease in pyramidal firing rate under sustained feed-forward input. However, under feed-forward transient input, the motor-sensory feedback facilitated pyramidal cell bursting while visual feedback increased spike time precision. Our findings argue for multiple feedback motifs implementing different dynamic non-linear operations.


2020 ◽  
Vol 20 (2) ◽  
pp. 995-1020 ◽  
Author(s):  
Yufei Zou ◽  
Yuhang Wang ◽  
Yun Qian ◽  
Hanqin Tian ◽  
Jia Yang ◽  
...  

Abstract. Large wildfires exert strong disturbance on regional and global climate systems and ecosystems by perturbing radiative forcing as well as the carbon and water balance between the atmosphere and land surface, while short- and long-term variations in fire weather, terrestrial ecosystems, and human activity modulate fire intensity and reshape fire regimes. The complex climate–fire–ecosystem interactions were not fully integrated in previous climate model studies, and the resulting effects on the projections of future climate change are not well understood. Here we use the fully interactive REgion-Specific ecosystem feedback Fire model (RESFire) that was developed in the Community Earth System Model (CESM) to investigate these interactions and their impacts on climate systems and fire activity. We designed two sets of decadal simulations using CESM-RESFire for present-day (2001–2010) and future (2051–2060) scenarios, respectively, and conducted a series of sensitivity experiments to assess the effects of individual feedback pathways among climate, fire, and ecosystems. Our implementation of RESFire, which includes online land–atmosphere coupling of fire emissions and fire-induced land cover change (LCC), reproduces the observed aerosol optical depth (AOD) from space-based Moderate Resolution Imaging Spectroradiometer (MODIS) satellite products and ground-based AErosol RObotic NETwork (AERONET) data; it agrees well with carbon budget benchmarks from previous studies. We estimate the global averaged net radiative effect of both fire aerosols and fire-induced LCC at -0.59±0.52 W m−2, which is dominated by fire aerosol–cloud interactions (-0.82±0.19 W m−2), in the present-day scenario under climatological conditions of the 2000s. The fire-related net cooling effect increases by ∼170 % to -1.60±0.27 W m−2 in the 2050s under the conditions of the Representative Concentration Pathway 4.5 (RCP4.5) scenario. Such considerably enhanced radiative effect is attributed to the largely increased global burned area (+19 %) and fire carbon emissions (+100 %) from the 2000s to the 2050s driven by climate change. The net ecosystem exchange (NEE) of carbon between the land and atmosphere components in the simulations increases by 33 % accordingly, implying that biomass burning is an increasing carbon source at short-term timescales in the future. High-latitude regions with prevalent peatlands would be more vulnerable to increased fire threats due to climate change, and the increase in fire aerosols could counter the projected decrease in anthropogenic aerosols due to air pollution control policies in many regions. We also evaluate two distinct feedback mechanisms that are associated with fire aerosols and fire-induced LCC, respectively. On a global scale, the first mechanism imposes positive feedbacks to fire activity through enhanced droughts with suppressed precipitation by fire aerosol–cloud interactions, while the second one manifests as negative feedbacks due to reduced fuel loads by fire consumption and post-fire tree mortality and recovery processes. These two feedback pathways with opposite effects compete at regional to global scales and increase the complexity of climate–fire–ecosystem interactions and their climatic impacts.


Sign in / Sign up

Export Citation Format

Share Document