scholarly journals Analysis of a virus-resistant HIV-1 model with behavior change in non-progressors

BIOMATH ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 2006143
Author(s):  
Musa Rabiu ◽  
Robert Willie ◽  
Nabendra Parumasur

We develop a virus-resistant HIV-1 mathematical model with behavioural change in HIV-1 resistant non-progressors. The model has both disease-free and endemic equilibrium points that are proved to be locally asymptotically stable depending on the value of the associated reproduction numbers. In both models, a non-linear Goh{Volterra Lyapunov function was used to prove that the endemic equilibrium point is globally asymptotically stable for special case while the method of Castillo-Chavez was used to prove the global asymptotic stability of the disease-free equilibrium point. In both the analytic and numerical results, this study shows that in the context of resistance to HIV/AIDS, total abstinence can also play an important role in protection against this notorious infectious disease.

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Ebrima Kanyi ◽  
Ayodeji Sunday Afolabi ◽  
Nelson Owuor Onyango

This paper presents a mathematical model that describes the transmission dynamics of schistosomiasis for humans, snails, and the free living miracidia and cercariae. The model incorporates the treated compartment and a preventive factor due to water sanitation and hygiene (WASH) for the human subpopulation. A qualitative analysis was performed to examine the invariant regions, positivity of solutions, and disease equilibrium points together with their stabilities. The basic reproduction number, R 0 , is computed and used as a threshold value to determine the existence and stability of the equilibrium points. It is established that, under a specific condition, the disease-free equilibrium exists and there is a unique endemic equilibrium when R 0 > 1 . It is shown that the disease-free equilibrium point is both locally and globally asymptotically stable provided R 0 < 1 , and the unique endemic equilibrium point is locally asymptotically stable whenever R 0 > 1 using the concept of the Center Manifold Theory. A numerical simulation carried out showed that at R 0 = 1 , the model exhibits a forward bifurcation which, thus, validates the analytic results. Numerical analyses of the control strategies were performed and discussed. Further, a sensitivity analysis of R 0 was carried out to determine the contribution of the main parameters towards the die out of the disease. Finally, the effects that these parameters have on the infected humans were numerically examined, and the results indicated that combined application of treatment and WASH will be effective in eradicating schistosomiasis.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 520
Author(s):  
Manuel De la Sen ◽  
Santiago Alonso-Quesada ◽  
Asier Ibeas

A new discrete Susceptible-Exposed-Infectious-Recovered (SEIR) epidemic model is proposed, and its properties of non-negativity and (both local and global) asymptotic stability of the solution sequence vector on the first orthant of the state-space are discussed. The calculation of the disease-free and the endemic equilibrium points is also performed. The model has the following main characteristics: (a) the exposed subpopulation is infective, as it is the infectious one, but their respective transmission rates may be distinct; (b) a feedback vaccination control law on the Susceptible is incorporated; and (c) the model is subject to delayed partial re-susceptibility in the sense that a partial immunity loss in the recovered individuals happens after a certain delay. In this way, a portion of formerly recovered individuals along a range of previous samples is incorporated again to the susceptible subpopulation. The rate of loss of partial immunity of the considered range of previous samples may be, in general, distinct for the various samples. It is found that the endemic equilibrium point is not reachable in the transmission rate range of values, which makes the disease-free one to be globally asymptotically stable. The critical transmission rate which confers to only one of the equilibrium points the property of being asymptotically stable (respectively below or beyond its value) is linked to the unity basic reproduction number and makes both equilibrium points to be coincident. In parallel, the endemic equilibrium point is reachable and globally asymptotically stable in the range for which the disease-free equilibrium point is unstable. It is also discussed the relevance of both the vaccination effort and the re-susceptibility level in the modification of the disease-free equilibrium point compared to its reached component values in their absence. The influences of the limit control gain and equilibrium re-susceptibility level in the reached endemic state are also explicitly made viewable for their interpretation from the endemic equilibrium components. Some simulation examples are tested and discussed by using disease parameterizations of COVID-19.


2004 ◽  
Vol 12 (04) ◽  
pp. 399-417 ◽  
Author(s):  
M. KGOSIMORE ◽  
E. M. LUNGU

This study investigates the effects of vaccination and treatment on the spread of HIV/AIDS. The objectives are (i) to derive conditions for the success of vaccination and treatment programs and (ii) to derive threshold conditions for the existence and stability of equilibria in terms of the effective reproduction number R. It is found, firstly, that the success of a vaccination and treatment program is achieved when R0t<R0, R0t<R0v and γeRVT(σ)<RUT(α), where R0t and R0v are respectively the reproduction numbers for populations consisting entirely of treated and vaccinated individuals, R0 is the basic reproduction number in the absence of any intervention, RUT(α) and RVT(σ) are respectively the reproduction numbers in the presence of a treatment (α) and a combination of vaccination and treatment (σ) strategies. Secondly, that if R<1, there exists a unique disease free equilibrium point which is locally asymptotically stable, while if R>1 there exists a unique locally asymptotically stable endemic equilibrium point, and that the two equilibrium points coalesce at R=1. Lastly, it is concluded heuristically that the stable disease free equilibrium point exists when the conditions R0t<R0, R0t<R0v and γeRVT(σ)<RUT(α) are satisfied.


2021 ◽  
Vol 2 (2) ◽  
pp. 68-79
Author(s):  
Muhammad Manaqib ◽  
Irma Fauziah ◽  
Eti Hartati

This study developed a model for the spread of COVID-19 disease using the SIR model which was added by a health mask and quarantine for infected individuals. The population is divided into six subpopulations, namely the subpopulation susceptible without a health mask, susceptible using a health mask, infected without using a health mask, infected using a health mask, quarantine for infected individuals, and the subpopulation to recover. The results obtained two equilibrium points, namely the disease-free equilibrium point and the endemic equilibrium point, and the basic reproduction number (R0). The existence of a disease-free equilibrium point is unconditional, whereas an endemic equilibrium point exists if the basic reproduction number is more than one. Stability analysis of the local asymptotically stable disease-free equilibrium point when the basic reproduction number is less than one. Furthermore, numerical simulations are carried out to provide a geometric picture related to the results that have been analyzed. The results of numerical simulations support the results of the analysis obtained. Finally, the sensitivity analysis of the basic reproduction numbers carried out obtained four parameters that dominantly affect the basic reproduction number, namely the rate of contact of susceptible individuals with infection, the rate of health mask use, the rate of health mask release, and the rate of quarantine for infected individuals.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Yaping Wang ◽  
Fuqin Sun

A HIV-1 model with two distributed intracellular delays and general incidence function is studied. Conditions are given under which the system exhibits the threshold behavior: the disease-free equilibriumE0is globally asymptotically stable ifR0≤1; ifR0>1, then the unique endemic equilibriumE1is globally asymptotically stable. Finally, it is shown that the given conditions are satisfied by several common forms of the incidence functions.


2021 ◽  
Vol 16 ◽  
pp. 1-9
Author(s):  
Joko Harianto

This article discusses modifications to the SEIL model that involve logistical growth. This model is used to describe the dynamics of the spread of tuberculosis disease in the population. The existence of the model's equilibrium points and its local stability depends on the basic reproduction number. If the basic reproduction number is less than unity, then there is one equilibrium point that is locally asymptotically stable. The equilibrium point is a disease-free equilibrium point. If the basic reproduction number ranges from one to three, then there are two equilibrium points. The two equilibrium points are disease-free equilibrium and endemic equilibrium points. Furthermore, for this case, the endemic equilibrium point is locally asymptotically stable.


2019 ◽  
Vol 16 (1) ◽  
pp. 107
Author(s):  
Willyam Daniel Sihotang ◽  
Ceria Clara Simbolon ◽  
July Hartiny ◽  
Desrinawati Tindaon ◽  
Lasker Pangarapan Sinaga

Measles is a contagious infectious disease caused by a virus and has the potential to cause an outbreak. Immunization and vaccination are carried out as an effort to prevent the spread of measles. This study aims to analyze and determine the stability of the SEIR model on the spread of measles with the influence of immunization and MR vaccines. The results obtained from model analysis, namely there are two disease free and endemic equilibrium points. If the conditions are met, the measles-free equilibrium point will be asymptotically stable and the measles endemic equilibrium point will be stable. Numerical solutions show a decrease in the rate of spread of measles due to the effect of immunization and the addition of MR vaccines.


2021 ◽  
Vol 4 (2) ◽  
pp. 106-124
Author(s):  
Raqqasyi Rahmatullah Musafir ◽  
Agus Suryanto ◽  
Isnani Darti

We discuss the dynamics of new COVID-19 epidemic model by considering asymptomatic infections and the policies such as quarantine, protection (adherence to health protocols), and vaccination. The proposed model contains nine subpopulations: susceptible (S), exposed (E), symptomatic infected (I), asymptomatic infected (A), recovered (R), death (D), protected (P), quarantined (Q), and vaccinated (V ). We first show the non-negativity and boundedness of solutions. The equilibrium points, basic reproduction number, and stability of equilibrium points, both locally and globally, are also investigated analytically. The proposed model has disease-free equilibrium point and endemic equilibrium point. The disease-free equilibrium point always exists and is globally asymptotically stable if basic reproduction number is less than one. The endemic equilibrium point exists uniquely and is globally asymptotically stable if the basic reproduction number is greater than one. These properties have been confirmed by numerical simulations using the fourth order Runge-Kutta method. Numerical simulations show that the disease transmission rate of asymptomatic infection, quarantine rates, protection rate, and vaccination rates affect the basic reproduction number and hence also influence the stability of equilibrium points.


2019 ◽  
Vol 12 (02) ◽  
pp. 1950021 ◽  
Author(s):  
Dounia Bentaleb ◽  
Saida Amine

In this paper, we study a multi-strain SEIR epidemic model with both bilinear and non-monotone incidence functions. Under biologically motivated assumptions, we show that the model has two basic reproduction numbers that we noted [Formula: see text] and [Formula: see text]; and four equilibrium points. Using the Lyapunov method, we prove that if [Formula: see text] and [Formula: see text] are less than one then the disease-free equilibrium is Globally Asymptotically Stable, thus the disease will be eradicated. However, if one of the two basic reproduction numbers is greater than one, then the strain that persists is that with the larger basic reproduction number. And finally if both of the two basic reproduction numbers are equal or greater than one then the total endemic equilibrium is globally asymptotically stable. A numerical simulation is also presented to illustrate the influence of the psychological effect, of people to infection, on the spread of the disease in the population. This simulation can be used to determine the status of different diseases in a region using the corresponding data and infectious disease parameters.


Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 350 ◽  
Author(s):  
Mohammad A. Safi

A new two-stage model for assessing the effect of basic control measures, quarantine and isolation, on a general disease transmission dynamic in a population is designed and rigorously analyzed. The model uses the Holling II incidence function for the infection rate. First, the basic reproduction number ( R 0 ) is determined. The model has both locally and globally asymptotically stable disease-free equilibrium whenever R 0 < 1 . If R 0 > 1 , then the disease is shown to be uniformly persistent. The model has a unique endemic equilibrium when R 0 > 1 . A nonlinear Lyapunov function is used in conjunction with LaSalle Invariance Principle to show that the endemic equilibrium is globally asymptotically stable for a special case.


Sign in / Sign up

Export Citation Format

Share Document