scholarly journals Global Stability Analysis of Two-Stage Quarantine-Isolation Model with Holling Type II Incidence Function

Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 350 ◽  
Author(s):  
Mohammad A. Safi

A new two-stage model for assessing the effect of basic control measures, quarantine and isolation, on a general disease transmission dynamic in a population is designed and rigorously analyzed. The model uses the Holling II incidence function for the infection rate. First, the basic reproduction number ( R 0 ) is determined. The model has both locally and globally asymptotically stable disease-free equilibrium whenever R 0 < 1 . If R 0 > 1 , then the disease is shown to be uniformly persistent. The model has a unique endemic equilibrium when R 0 > 1 . A nonlinear Lyapunov function is used in conjunction with LaSalle Invariance Principle to show that the endemic equilibrium is globally asymptotically stable for a special case.

Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 328 ◽  
Author(s):  
Yanli Ma ◽  
Jia-Bao Liu ◽  
Haixia Li

In this paper, an SIQR (Susceptible, Infected, Quarantined, Recovered) epidemic model with vaccination, elimination, and quarantine hybrid strategies is proposed, and the dynamics of this model are analyzed by both theoretical and numerical means. Firstly, the basic reproduction number R 0 , which determines whether the disease is extinct or not, is derived. Secondly, by LaSalles invariance principle, it is proved that the disease-free equilibrium is globally asymptotically stable when R 0 < 1 , and the disease dies out. By Routh-Hurwitz criterion theory, we also prove that the disease-free equilibrium is unstable and the unique endemic equilibrium is locally asymptotically stable when R 0 > 1 . Thirdly, by constructing a suitable Lyapunov function, we obtain that the unique endemic equilibrium is globally asymptotically stable and the disease persists at this endemic equilibrium if it initially exists when R 0 > 1 . Finally, some numerical simulations are presented to illustrate the analysis results.


2012 ◽  
Vol 05 (03) ◽  
pp. 1260011 ◽  
Author(s):  
WEI-WEI SHI ◽  
YUAN-SHUN TAN

We develop an influenza pandemic model with quarantine and treatment, and analyze the dynamics of the model. Analytical results of the model show that, if basic reproduction number [Formula: see text], the disease-free equilibrium (DFE) is globally asymptotically stable, if [Formula: see text], the disease is uniformly persistent. The model is then extended to assess the impact of three anti-influenza control measures, precaution, quarantine and treatment, by re-formulating the model as an optimal control problem. We focus primarily on controlling disease with a possible minimal the systemic cost. Pontryagin's maximum principle is used to characterize the optimal levels of the three controls. Numerical simulations of the optimality system, using a set of reasonable parameter values, indicate that the precaution measure is more effective in reducing disease transmission than the other two control measures. The precaution measure should be emphasized.


2010 ◽  
Vol 03 (03) ◽  
pp. 299-312 ◽  
Author(s):  
SHU-MIN GUO ◽  
XUE-ZHI LI ◽  
XIN-YU SONG

In this paper, an age-structured SEIS epidemic model with infectivity in incubative period is formulated and studied. The explicit expression of the basic reproduction number R0 is obtained. It is shown that the disease-free equilibrium is globally asymptotically stable if R0 < 1, at least one endemic equilibrium exists if R0 > 1. The stability conditions of endemic equilibrium are also given.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Jing'an Cui ◽  
Zhanmin Wu ◽  
Xueyong Zhou

We consider aSVR-Bcholera model with imperfect vaccination. By analyzing the corresponding characteristic equations, the local stability of a disease-free equilibrium and an endemic equilibrium is established. We calculate the certain threshold known as the control reproduction numberℛv. Ifℛv<1, we obtain sufficient conditions for the global asymptotic stability of the disease-free equilibrium; the diseases will be eliminated from the community. By comparison of arguments, it is proved that ifℛv>1, the disease persists and the unique endemic equilibrium is globally asymptotically stable, which is obtained by the second compound matrix techniques and autonomous convergence theorems. We perform sensitivity analysis ofℛvon the parameters in order to determine their relative importance to disease transmission and show that an imperfect vaccine is always beneficial in reducing disease spread within the community.


2019 ◽  
Vol 8 (2) ◽  
pp. 32
Author(s):  
Guiro Aboudramane ◽  
Dramane Ouedraogo ◽  
Harouna Ouedraogo

In this paper, we construct a backward difference scheme for a class of general SIR epidemic model with general incidence function f. We use the step size h > 0, for the discretization. The dynamical properties are investigated (positivity and the boundedness of solution). By constructing the Lyapunov function, under the conditions that function f satisfies some assumptions. The global stabilities of equilibria are obtained. If the basic reproduction number R0<1, the disease-free equilibrium is globally asymptotically stable. If R0>1, the endemic equilibrium is globally asymptotically stable.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
El Mehdi Lotfi ◽  
Mehdi Maziane ◽  
Khalid Hattaf ◽  
Noura Yousfi

The aim of this paper is to study the dynamics of a reaction-diffusion SIR epidemic model with specific nonlinear incidence rate. The global existence, positivity, and boundedness of solutions for a reaction-diffusion system with homogeneous Neumann boundary conditions are proved. The local stability of the disease-free equilibrium and endemic equilibrium is obtained via characteristic equations. By means of Lyapunov functional, the global stability of both equilibria is investigated. More precisely, our results show that the disease-free equilibrium is globally asymptotically stable if the basic reproduction number is less than or equal to unity, which leads to the eradication of disease from population. When the basic reproduction number is greater than unity, then disease-free equilibrium becomes unstable and the endemic equilibrium is globally asymptotically stable; in this case the disease persists in the population. Numerical simulations are presented to illustrate our theoretical results.


2009 ◽  
Vol 02 (03) ◽  
pp. 357-362 ◽  
Author(s):  
LUJU LIU

A tuberculosis (TB) model with two latent periods, short-term latent period (E1) and long-term latent period (E2), and fast and slow progressions is analyzed. The stability of the unique endemic equilibrium of the model is proved. It turns out that the disease-free equilibrium is globally asymptotically stable if the basic reproduction number R0 ≤ 1, and the endemic equilibrium is globally asymptotically stable if R0 > 1.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Mohammad A. Safi ◽  
Salisu M. Garba

A deterministic model for the transmission dynamics of a communicable disease is developed and rigorously analysed. The model, consisting of five mutually exclusive compartments representing the human dynamics, has a globally asymptotically stable disease-free equilibrium (DFE) whenever a certain epidemiological threshold, known as the basicreproduction number(ℛ0), is less than unity; in such a case the endemic equilibrium does not exist. On the other hand, when the reproduction number is greater than unity, it is shown, using nonlinear Lyapunov function of Goh-Volterra type, in conjunction with the LaSalle's invariance principle, that the unique endemic equilibrium of the model is globally asymptotically stable under certain conditions. Furthermore, the disease is shown to be uniformly persistent wheneverℛ0>1.


2020 ◽  
Author(s):  
Jangyadatta Behera ◽  
Aswin Kumar Rauta ◽  
Yerra Shankar Rao ◽  
Sairam Patnaik

Abstract In this paper, a mathematical model is proposed on the spread and control of corona virus disease2019 (COVID19) to ascertain the impact of pre quarantine for suspected individuals having travel history ,immigrants and new born cases in the susceptible class following the lockdown or shutdown rules and adopted the post quarantine process for infected class. Set of nonlinear ordinary differential equations (ODEs) are generated and parameters like natural mortality rate, rate of COVID-19 induced death, rate of immigrants, rate of transmission and recovery rate are integrated in the scheme. A detailed analysis of this model is conducted analytically and numerically. The local and global stability of the disease is discussed mathematically with the help of Basic Reproduction Number. The ODEs are solved numerically with the help of Runge-Kutta 4th order method and graphs are drawn using MATLAB software to validate the analytical result with numerical simulation. It is found that both results are in good agreement with the results available in the existing literatures. The stability analysis is performed for both disease free equilibrium and endemic equilibrium points. The theorems based on Routh-Hurwitz criteria and Lyapunov function are proved .It is found that the system is locally asymptotically stable at disease free and endemic equilibrium points for basic reproduction number less than one and globally asymptotically stable for basic reproduction number greater than one. Finding of this study suggest that COVID-19 would remain pandemic with the progress of time but would be stable in the long-term if the pre and post quarantine policy for asymptomatic and symptomatic individuals are implemented effectively followed by social distancing, lockdown and containment.


2015 ◽  
Vol 08 (06) ◽  
pp. 1550082 ◽  
Author(s):  
Muhammad Altaf Khan ◽  
Yasir Khan ◽  
Qaiser Badshah ◽  
Saeed Islam

In this paper, an SEIVR epidemic model with generalized incidence and preventive vaccination is considered. First, we formulate the model and obtain its basic properties. Then, we find the equilibrium points of the model, the disease-free and the endemic equilibrium. The stability of disease-free and endemic equilibrium is associated with the basic reproduction number [Formula: see text]. If the basic reproduction number [Formula: see text], the disease-free equilibrium is locally as well as globally asymptotically stable. Moreover, if the basic reproduction number [Formula: see text], the disease is uniformly persistent and the unique endemic equilibrium of the system is locally as well as globally asymptotically stable under certain conditions. Finally, the numerical results justify the analytical results.


Sign in / Sign up

Export Citation Format

Share Document