Feasible Numerical Technique for Analysis of Offshore Pipelines and Risers

2021 ◽  
Author(s):  
Pavel Trapper
Author(s):  
Pavel A. Trapper

Abstract A simple 2D numerical model for pipeline and riser configuration analyses is presented. The model considers large deformations of the pipe, pipe-seabed contact detection, pipe’s interaction with uneven inelastic seabed, environmental loading such as drag forces applied by the ocean currents, water surface level variations and incorporation of buoyancy modules. The solution technique is based on a consistent minimization of the total potential energy of the deformed pipe discretized as a Riemann sum, which results in a system of nonlinear algebraic finite difference equations that is solved in an incremental/iterative manner. At each increment, the total potential energy is being updated, thus accounting for energy dissipation due to irrecoverable plastic deformation of the seabed and according to hydrodynamic drag forces. The whole pipe is treated as a single continuous segment. To demonstrate the method, examples with several riser configurations and pipe-lay scenarios are presented. It is shown how on-bottom unevenness, including pits and hills, incorporation of buoyancy modules and tidal effects can affect pipeline or riser configurations and their internal forces. Results are compared to those obtained with Abaqus and appear to be in an excellent agreement. The model presents simple and time-efficient way to analyze the pipe-lay or riser configurations with various boundary and loading conditions. The proposed model, contrary to commercial packages, which impose using time-consuming Graphical User Interface (GUI), allows for performing the series of analyses for varying geometric and/or material properties, and processing the results in reasonable time by single click.


2013 ◽  
Vol 41 (3) ◽  
pp. 174-195 ◽  
Author(s):  
Anuwat Suwannachit ◽  
Udo Nackenhorst

ABSTRACT A new computational technique for the thermomechanical analysis of tires in stationary rolling contact is suggested. Different from the existing approaches, the proposed method uses the constitutive description of tire rubber components, such as large deformations, viscous hysteresis, dynamic stiffening, internal heating, and temperature dependency. A thermoviscoelastic constitutive model, which incorporates all the mentioned effects and their numerical aspects, is presented. An isentropic operator-split algorithm, which ensures numerical stability, was chosen for solving the coupled mechanical and energy balance equations. For the stationary rolling-contact analysis, the constitutive model presented and the operator-split algorithm are embedded into the Arbitrary Lagrangian Eulerian (ALE)–relative kinematic framework. The flow of material particles and their inelastic history within the spatially fixed mesh is described by using the recently developed numerical technique based on the Time Discontinuous Galerkin (TDG) method. For the efficient numerical solutions, a three-phase, staggered scheme is introduced. First, the nonlinear, mechanical subproblem is solved using inelastic constitutive equations. Next, deformations are transferred to the subsequent thermal phase for the solution of the heat equations concerning the internal dissipation as a source term. In the third step, the history of each material particle, i.e., each internal variable, is transported through the fixed mesh corresponding to the convective velocities. Finally, some numerical tests with an inelastic rubber wheel and a car tire model are presented.


2018 ◽  
Vol 13 (4) ◽  
pp. 79-91 ◽  
Author(s):  
E.Sh. Nasibullaeva

The paper presents a generalized mathematical model and numerical investigation of the problem of acoustic scattering from a single sound-permeable sphere during the passage of two types of waves - spherical from a monopole radiation source and a plane one. In solving the Helmholtz equation, a numerical technique based on the fast method of multipoles is used, which allows achieving high accuracy of the results obtained at the lowest cost of computer time. The calculations are compared with known experimental data and a good agreement is obtained. The formulas for calculating the main characteristic of the scattering field (the total scattering cross section) for a sound-permeable sphere are generalized. The effect on this characteristic of the physical parameters of media outside and inside the sphere, such as the density and speed of sound, is shown. A numerical parametric analysis of the pressure distribution around a single sound-permeable sphere for different values of the wave radius, density, and speed of sound of the outer and inner medium of the sphere is carried out. The obtained results will later be used for test verification calculations for the numerical solution of the generalized problem of acoustic scattering of a set of sound-permeable spheres (coaxial or arbitrarily located in space).


Author(s):  
Khalid K. Ali ◽  
Mohamed A. Abd El salam ◽  
Emad M. H. Mohamed

AbstractIn this paper, a numerical technique for a general form of nonlinear fractional-order differential equations with a linear functional argument using Chebyshev series is presented. The proposed equation with its linear functional argument represents a general form of delay and advanced nonlinear fractional-order differential equations. The spectral collocation method is extended to study this problem as a discretization scheme, where the fractional derivatives are defined in the Caputo sense. The collocation method transforms the given equation and conditions to algebraic nonlinear systems of equations with unknown Chebyshev coefficients. Additionally, we present a general form of the operational matrix for derivatives. A general form of the operational matrix to derivatives includes the fractional-order derivatives and the operational matrix of an ordinary derivative as a special case. To the best of our knowledge, there is no other work discussed this point. Numerical examples are given, and the obtained results show that the proposed method is very effective and convenient.


Sign in / Sign up

Export Citation Format

Share Document