International Journal of Petroleum Technology
Latest Publications


TOTAL DOCUMENTS

51
(FIVE YEARS 33)

H-INDEX

2
(FIVE YEARS 0)

Published By Avanti Publishers

2409-787x

2021 ◽  
Vol 8 ◽  
pp. 99-115
Author(s):  
Samuel Mubenesha ◽  
Chike George Okoye-Chine ◽  
Franscina Katuchero Ramutsindela ◽  
Joshua Gorimbo ◽  
Mahluli Moyo ◽  
...  

Fischer-Tropsch (FT) synthesis has been studied in the literature as a greener pathway to cleaner and sustainable hydrocarbons production. However, the cost to upscale laboratory FT formulations to pilot scale is significantly expensive. This work proposes a cheaper and scalable low-temperature FT modified iron ore catalyst that is mechanically suited for fixed bed reactors. The mechanical strength reported in this investigation was three times more than commercial alumina spherical pellets and, therefore, suitable for pilot scale scenarios. A manufacturing cost analysis of iron ore was estimated to be US$38.45/kg using the CatCost model, and the conventionally prepared iron catalyst was US$71.44/kg using the same model. The manufacturing cost estimations of modified iron ore were found to be 46% cheaper than a conventional commercial iron catalyst. The catalytic performance of the modified iron ore catalyst showed a CO conversion of 72.1% ±4.24, with WGS and C5+ selectivity 48.6% ±1.96 and 83.2% ± 5.24, respectively. These findings were comparable (both in CO conversion and product selectivity) to the ones reported by other researchers.


2021 ◽  
Vol 8 ◽  
pp. 93-98
Author(s):  
O.N. Shemelina ◽  
V.P. Ovchinnikov ◽  
Y.N. Pavelyeva ◽  
S.S. Shemelin

The article presents the definition of problems in the well support from external local sealing loads. The conditions of local sealing loads are identified. The calculations were carried out according to the equations. A model of the stress-strain state in the well support has been created. The parameters of the effect of compression on the absolute value of strength are determined.


2021 ◽  
Vol 8 ◽  
pp. 55-79
Author(s):  
E. Bakhshi ◽  
A. Shahrabadi ◽  
N. Golsanami ◽  
Sh. Seyedsajadi ◽  
X. Liu ◽  
...  

The more comprehensive information on the reservoir properties will help to better plan drilling and design production. Herein, diagenetic processes and geomechanical properties are notable parameters that determine reservoir quality. Recognizing the geomechanical properties of the reservoir as well as building a mechanical earth model play a strong role in the hydrocarbon reservoir life cycle and are key factors in analyzing wellbore instability, drilling operation optimization, and hydraulic fracturing designing operation. Therefore, the present study focuses on selecting the candidate zone for hydraulic fracturing through a novel approach that simultaneously considers the diagenetic, petrophysical, and geomechanical properties. The diagenetic processes were analyzed to determine the porosity types in the reservoir. After that, based on the laboratory test results for estimating reservoir petrophysical parameters, the zones with suitable reservoir properties were selected. Moreover, based on the reservoir geomechanical parameters and the constructed mechanical earth model, the best zones were selected for hydraulic fracturing operation in one of the Iranian fractured carbonate reservoirs. Finally, a new empirical equation for estimating pore pressure in nine zones of the studied well was developed. This equation provides a more precise estimation of stress profiles and thus leads to more accurate decision-making for candidate zone selection. Based on the results, vuggy porosity was the best porosity type, and zones C2, E2 and G2, having suitable values of porosity, permeability, and water saturation, showed good reservoir properties. Therefore, zone E2 and G2 were chosen as the candidate for hydraulic fracturing simulation based on their E (Young’s modulus) and ν (Poisson’s ratio) values. Based on the mechanical earth model and changes in the acoustic data versus depth, a new equation is introduced for calculating the pore pressure in the studied reservoir. According to the new equation, the dominant stress regime in the whole well, especially in the candidate zones, is SigHmax>SigV>Sighmin, while according to the pore pressure equation presented in the literature, the dominant stress regime in the studied well turns out to be SigHmax>Sighmin>SigV.  


2021 ◽  
Vol 8 ◽  
pp. 80-92
Author(s):  
Myongjin Lee ◽  
Yun Gan ◽  
Chunyang Yang ◽  
Chunlei Ren ◽  
Xingjian Xue

Ni-cermet anode demonstrates excellent catalytic activity and electrical conductivity but suffers from carbon deposition issue. To utilize Ni-cermet anode while preventing carbon deposition, a synergic strategy is employed to design anode electrode. In particular, Zr is incorporated into Ce0.8Sm0.2O2-δ lattice to tailor oxygen storage and catalytic properties of Ni-Ce0.8-xSm0.2ZrxO2-δ anode for improving electrochemical oxidizations of various fuel species. An inert thick YSZ microtubular substrate with radially well-aligned microchannels open at the inner surface is used to support multi thin functional layers of solid oxide cell, i.e., Ni current collector, Ni-Ce0.8-xSm0.2ZrxO2-δ anode, YSZ/SDC electrolyte, and LSCF cathode. The thick YSZ substrate is able to inhibit the ratio of fuel to product gases in the thin anode functional layer, which favors the prevention of carbon buildup in the thin anode layer when synergistically combined with Ni-Ce0.8-xSm0.2ZrxO2-δ anode material. The microchannels embedded in the YSZ substrate can also avoid too much dilutions of the fuel in the anode functional layer. The cell is fabricated and tested with both hydrogen and methane as the fuel. A short-term test is conducted with methane as fuel and good stability is obtained. The fundamental mechanisms for the prevention of carbon buildup in anode functional layer are also discussed.


2020 ◽  
Vol 7 (1) ◽  
pp. 60-73
Author(s):  
Julio Santana ◽  
◽  
Amelia Miranda ◽  
Jesús Orozco ◽  
Yanelys Arana ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document