scholarly journals Pairing Directional Solar Inputs From Ray Tracing to Solar Receiver/reactor Heat Transfer Models on Unstructured Meshes: Development and Case Studies

2021 ◽  
Author(s):  
H. Evan Bush ◽  
Andrew J. Schrader ◽  
Peter Loutzenhiser
2020 ◽  
Vol 143 (3) ◽  
Author(s):  
H. Evan Bush ◽  
Andrew J. Schrader ◽  
Peter G. Loutzenhiser

Abstract A novel method for pairing surface irradiation and volumetric absorption from Monte Carlo ray tracing to computational heat transfer models is presented. The method is well-suited to directionally and spatially complex concentrated radiative inputs (e.g., solar receivers and reactors). The method employs a generalized algorithm for directly mapping absorbed rays from a Monte Carlo ray tracing model to boundary or volumetric source terms in the computational mesh. The algorithm is compatible with unstructured, two and three-dimensional meshes with varying element shapes. Four case studies were performed on a directly irradiated, windowed solar thermochemical reactor model to validate the method. The method was shown to conserve energy and preserve spatial variation when mapping rays from a Monte Carlo ray tracing model to a computational heat transfer model in ansys fluent.


Author(s):  
H. Evan Bush ◽  
Andrew J. Schrader ◽  
Peter G. Loutzenhiser

Abstract A novel method for pairing surface irradiation and volumetric absorption from ray tracing to computational heat transfer models is presented. The method is well-suited to directionally and spatially-complex concentrated radiative inputs, such as in solar receivers and reactors. The method employs a generalized algorithm for directly mapping absorbed rays from the ray tracing model to boundary or volumetric source terms in the computational mesh. The algorithm is compatible with unstructured, two and three-dimensional meshes with varying element shapes. To validate the method, four case studies were performed on a directly irradiated, windowed solar thermochemical reactor model. The method was shown to be energy conservative and to preserve spatial variation when mapping rays from a Monte Carlo ray tracing model to the computational heat transfer model in ANSYS Fluent.


Kerntechnik ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. 237-240
Author(s):  
M. Zhao ◽  
X. Liu ◽  
A. Badea ◽  
F. Feuerstein ◽  
X. Cheng

2021 ◽  
Vol 13 (7) ◽  
pp. 3920
Author(s):  
Benjamin Grange ◽  
Gilles Flamant

An aiming point strategy applied to a prototype-scale power tower is analyzed in this paper to define the operation conditions and to preserve the lifetime of the solar receiver developed in the framework of the Next-commercial solar power (CSP) H2020 project. This innovative solar receiver involves the fluidized particle-in-tube concept. The aiming solution is compared to the case without the aiming strategy. Due to the complex tubular geometry of the receiver, results of the Tabu search for the aiming point strategy are combined with a ray-tracing software, and these results are then coupled with a simplified thermal model of the receiver to evaluate its performance. Daily and hourly aiming strategies are compared, and different objective normalized flux distributions are applied to quantify their influence on the receiver wall temperature distribution, thermal efficiency and particle outlet temperature. A gradual increase in the solar incident power on the receiver is analyzed in order to keep a uniform outlet particle temperature during the start-up. Results show that a tradeoff must be respected between wall temperature and particle outlet temperature.


2021 ◽  
Vol 301 ◽  
pp. 117400
Author(s):  
Shen Du ◽  
Ming-Jia Li ◽  
Ya-Ling He ◽  
Sheng Shen

2015 ◽  
Vol 96 (2) ◽  
pp. 247-260 ◽  
Author(s):  
I. Gruais ◽  
D. Poliševski

Sign in / Sign up

Export Citation Format

Share Document