Acoustic Energy Balance During the Onset, Growth and Saturation of Thermoacoustic Instabilities

2021 ◽  
Author(s):  
Renaud Gaudron ◽  
Dong Yang ◽  
Aimee S. Morgans
Author(s):  
R. Gaudron ◽  
D. Yang ◽  
A. S. Morgans

Abstract Thermoacoustic instabilities can occur in a wide range of combustors and are prejudicial since they can lead to increased mechanical fatigue or even catastrophic failure. A well-established formalism to predict the onset, growth and saturation of such instabilities is based on acoustic network models. This approach has been successfully employed to predict the frequency and amplitude of limit cycle oscillations in a variety of combustors. However, it does not provide any physical insight in terms of the acoustic energy balance of the system. On the other hand, Rayleigh’s criterion may be used to quantify the losses, sources and transfers of acoustic energy within and at the boundaries of a combustor. However, this approach is cumbersome for most applications because it requires computing volume and surface integrals and averaging over an oscillation cycle. In this work, a new methodology for studying the acoustic energy balance of a combustor during the onset, growth and saturation of thermoacoustic instabilities is proposed. The two cornerstones of this new framework are the acoustic absorption coefficient Δ and the cycle-to-cycle acoustic energy ratio λ, both of which do not require computing integrals. Used along with a suitable acoustic network model, where the flame frequency response is described using the weakly nonlinear Flame Describing Function (FDF) formalism, these two dimensionless numbers are shown to characterize: 1) the variation of acoustic energy stored within the combustor between two consecutive cycles, 2) the acoustic energy transfers occurring at the combustor’s boundaries and 3) the sources and sinks of acoustic energy located within the combustor. The acoustic energy balance of the well-documented Palies burner is then analyzed during the onset, growth and saturation of thermoacoustic instabilities using this new methodology. It is demonstrated that this new approach allows a deeper understanding of the physical mechanisms at play. For instance, it is possible to determine when the flame acts as an acoustic energy source or sink, where acoustic damping is generated, and if acoustic energy is transmitted through the boundaries of the burner.


Author(s):  
Renaud Gaudron ◽  
Dong Yang ◽  
Aimee Morgans

Abstract Thermoacoustic instabilities can occur in a wide range of combustors and are prejudicial since they can lead to increased mechanical fatigue or even catastrophic failure. A well-established formalism to predict the onset, growth and saturation of such instabilities is based on acoustic network models. This approach has been successfully employed to predict the frequency and amplitude of limit cycle oscillations in a variety of combustors. However, it does not provide any physical insight in terms of the acoustic energy balance of the system. On the other hand, Rayleigh's criterion may be used to quantify the losses, sources and transfers of acoustic energy within and at the boundaries of a combustor. However, this approach is cumbersome for most applications because it requires computing volume and surface integrals and averaging over an oscillation cycle. In this work, a new methodology for studying the acoustic energy balance of a combustor during the onset, growth and saturation of thermoacoustic instabilities is proposed. The two cornerstones of this new framework are the acoustic absorption coefficient Delta and the cycle-to-cycle acoustic energy ratio lambda, both of which do not require computing integrals. Used along with a suitable acoustic network model, where the flame frequency response is described using the weakly nonlinear Flame Describing Function (FDF) formalism, these two dimensionless numbers are shown to characterize: 1) the variation of acoustic energy stored within the combustor between two consecutive cycles (rest of the abstract in the article).


Author(s):  
Daesik Kim ◽  
Seungchai Jung ◽  
Heeho Park

The side-wall cooling liner in a gas turbine combustor serves main purposes—heat transfer and emission control. Additionally, it functions as a passive damper to attenuate thermoacoustic instabilities. The perforations in the liner mainly convert acoustic energy into kinetic energy through vortex shedding at the orifice rims. In the previous decades, several analytical and semi-empirical models have been proposed to predict the acoustic damping of the perforated liner. In the current study, a few of the models are considered to embody the transfer matrix method (TMM) for analyzing the acoustic dissipation in a concentric tube resonator with a perforated element and validated against experimental data in the literature. All models are shown to quantitatively appropriately predict the acoustic behavior under high bias flow velocity conditions. Then, the models are applied to maximize the damping performance in a realistic gas turbine combustor, which is under development. It is found that the ratio of the bias flow Mach number to the porosity can be used as a design guideline in choosing the optimal combination of the number and diameter of perforations in terms of acoustic damping.


2009 ◽  
Vol 156 (1) ◽  
pp. 106-119 ◽  
Author(s):  
D. Durox ◽  
T. Schuller ◽  
N. Noiray ◽  
A.L. Birbaud ◽  
S. Candel

2021 ◽  
Author(s):  
André Fischer ◽  
Claus Lahiri

Abstract Many modern low emission combustion systems suffer from thermoacoustic instabilities, which may lead to customer irritation (noise) or engine damages. The prediction of the frequency response of the flame is oftentimes not straightforward, so that it is common practice to measure the flame response in an experiment. The outcome of the measurement is typically a flame transfer-function (FTF), which can be used in low order acoustic network models to represent the flame. This paper applies an alternative criterion to evaluate the potential of the flame to become instable, the flame-amplification factor (FAF). It is based on an energy balance method and can be directly derived from the measured flame-transfer-matrix (FTM). In order to demonstrate this approach two different kerosene-driven aircraft fuel injectors were measured in the Rolls-Royce SCARLET rig in a single-sector RQL-combustor under realistic operating conditions. Here the multi-microphone method has been applied with acoustic forcing from up- and downstream side to determine the FTM. In contrast to the FTF-approach the full FTM data has been post-processed to derive the FAF. The FAF is then successfully used to rank the fuel injectors regarding their low frequency thermo-acoustic behaviour, because it is proportional to amplitudes of self-excited frequencies in FANN-rig (full annular) configuration.


1981 ◽  
Vol 17 (4) ◽  
pp. 181-183
Author(s):  
B. V. Pokrovskii ◽  
A. I. Krasil'nikov

1994 ◽  
Vol 144 ◽  
pp. 315-321 ◽  
Author(s):  
M. G. Rovira ◽  
J. M. Fontenla ◽  
J.-C. Vial ◽  
P. Gouttebroze

AbstractWe have improved previous model calculations of the prominence-corona transition region including the effect of the ambipolar diffusion in the statistical equilibrium and energy balance equations. We show its influence on the different parameters that characterize the resulting prominence theoretical structure. We take into account the effect of the partial frequency redistribution (PRD) in the line profiles and total intensities calculations.


1977 ◽  
Vol 36 ◽  
pp. 143-180 ◽  
Author(s):  
J.O. Stenflo

It is well-known that solar activity is basically caused by the Interaction of magnetic fields with convection and solar rotation, resulting in a great variety of dynamic phenomena, like flares, surges, sunspots, prominences, etc. Many conferences have been devoted to solar activity, including the role of magnetic fields. Similar attention has not been paid to the role of magnetic fields for the overall dynamics and energy balance of the solar atmosphere, related to the general problem of chromospheric and coronal heating. To penetrate this problem we have to focus our attention more on the physical conditions in the ‘quiet’ regions than on the conspicuous phenomena in active regions.


Sign in / Sign up

Export Citation Format

Share Document