Unsteady Flow Simulation Through Stator-Rotor Blade Rows in Intermediate-Pressure Steam Turbines With Cutback Blades

2021 ◽  
Author(s):  
Hironori Miyazawa ◽  
Akihiro Uemura ◽  
Takashi Furusawa ◽  
Satoru Yamamoto ◽  
Koichi Yonezawa ◽  
...  
Author(s):  
Hironori Miyazawa ◽  
Akihiro Uemura ◽  
Takashi Furusawa ◽  
Satoru Yamamoto ◽  
Koichi Yonezawa ◽  
...  

Abstract Stator and rotor blades in intermediate-pressure steam turbines gradually deteriorate during operation because of solid particle erosion. In addition to that, turbine blades unexpectedly crack because of metal fatigue or thermal stress deformation. As eroded blades increase the aerodynamic losses and cracked blades may induce rupture of the blade, the periodic maintenance, repair, and overhaul of steam turbines is essential. Eroded or cracked blades should be replaced with new ones or repaired for further use. Cutback treatment is one of the repair methods wherein the deteriorated trailing edge on a turbine blade is removed to avoid further cracking and blade fracturing. The use of cutback blades can reduce the replacement cost; however, that may affect the steam flow and the turbine’s performance. In this study, we numerically investigated the effect of the blade deterioration on the performance of a three-stage intermediate-pressure steam turbine using a numerical method that was developed at Tohoku University. Further various cutback lengths were considered for the deteriorated first-stage stator-blade trailing edge. The obtained numerical results indicate that the cutback first-stage stator blades certainly affected the steam flow in the turbine, resulting in a negative influence on the torque obtained from the adjacent rotor blades, which depends on the cutback length. However, the torque decrement can be mitigated by arranging the cutback and non-cutback stator blades alternately in a row.


Author(s):  
Koichi Yonezawa ◽  
Tomoki Kagayama ◽  
Masahiro Takayasu ◽  
Genki Nakai ◽  
Kazuyasu Sugiyama ◽  
...  

Deteriorations of nozzle guide vanes (NGVs) and rotor blades of a steam turbine through a long-time operation usually decrease a thermal efficiency and a power output of the turbine. In this study, influences of blade deformations due to erosion are discussed. Experiments were carried out in order to validate numerical simulations using a commercial software ANSYS-cfx. The numerical results showed acceptable agreements with experimental results. Variation of flow characteristics in the first stage of the intermediate pressure steam turbine is examined using numerical simulations. Geometries of the NGVs and the rotor blades are measured using a 3D scanner during an overhaul. The old NGVs and the rotor blades, which were used in operation, were eroded through the operation. The erosion of the NGVs leaded to increase of the throat area of the nozzle. The numerical results showed that rotor inlet velocity through the old NGVs became smaller and the flow angle of attack to the rotor blade leading edge became smaller. Consequently, the rotor power decreased significantly. Influences of the flow angle of at the rotor inlet were examined by parametric calculations and results showed that the angle of attack was an important parameter to determine the rotor performance. In addition, the influence of the deformation of the rotor blade was examined. The results showed that the degradation of the rotor performance decreased in accordance with the decrease of blade surface area.


Author(s):  
Kevin Cremanns ◽  
Dirk Roos ◽  
Arne Graßmann

In order to meet the requirements of rising energy demand, one goal in the design process of modern steam turbines is to achieve high efficiencies. A major gain in efficiency is expected from the optimization of the last stage and the subsequent diffuser of a low pressure turbine (LP). The aim of such optimization is to minimize the losses due to separations or inefficient blade or diffuser design. In the usual design process, as is state of the art in the industry, the last stage of the LP and the diffuser is designed and optimized sequentially. The potential physical coupling effects are not considered. Therefore the aim of this paper is to perform both a sequential and coupled optimization of a low pressure steam turbine followed by an axial radial diffuser and subsequently to compare results. In addition to the flow simulation, mechanical and modal analysis is also carried out in order to satisfy the constraints regarding the natural frequencies and stresses. This permits the use of a meta-model, which allows very time efficient three dimensional (3D) calculations to account for all flow field effects.


Sign in / Sign up

Export Citation Format

Share Document