nozzle guide vanes
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 25)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 5 ◽  
pp. 202-215
Author(s):  
Faisal Shaikh ◽  
Budimir Rosic

The combustor-turbine interface in a gas turbine is characterised by complex, highly unsteady flows. In a combined experimental and large eddy simulation (LES) study including realistic combustor geometry, the standard model of secondary flows in the nozzle guide vanes (NGV) is found to be oversimplified. A swirl core is created in the combustion chamber which convects into the first vane passages. Four main consequences of this are identified: variation in vane loading; unsteady heat transfer on vane surfaces; unsteadiness at the leading edge horseshoe vortex, and variation in the position of the passage vortex. These phenomena occur at relatively low frequencies, from 50–300 Hz. It seems likely that these unsteady phenomena result in non-optimal film cooling, and that by reducing unsteadiness designs with greater cooling efficiency could be achieved. Measurements were performed in a high speed test facility modelling a large industrial gas turbine with can combustors, including nozzle guide vanes and combustion chambers. Vane surfaces and endwalls of a nozzle guide vane were instrumented with 384 high speed thin film heat flux gauges, to measure unsteady heat transfer. The high resolution of measurements was such to allow direct visualisation in time of large scale turbulent structures over the endwalls and vane surfaces. A matching LES simulation was carried out in a domain matching experimental conditions including upstream swirl generators and transition duct. Data reduction allowed time-varying LES data to be recorded for several cycles of the unsteady phenomena observed. The combination of LES and experimental data allows physical explanation and visualisation of flow events.


2021 ◽  
pp. 1-35
Author(s):  
Daniel Burdett ◽  
Thomas Povey

Abstract This paper presents high-fidelity experimental traverse measurements downstream of an annular cascade of transonic nozzle guide vanes (NGVs) from a high-pressure (HP) turbine stage. The components are heavily-cooled real engine components from a modern civil gas turbine engine, operated at scaled engine conditions. Tests were conducted in the high technology readiness level (TRL) Engine Component Aerothermal (ECAT) facility at the University of Oxford. High resolution full-area traverse measurements of local kinetic energy (KE) loss coefficient are presented in several axial planes. In particular, we present: circumferential loss coefficient profiles at several radial heights; full-area traverses at three axial planes; and fully mixed-out loss calculations. Analysis of these data gives insight into particular loss structures, overall aerodynamic performance, and wake mixing rates. The effect of exit Mach number on performance is also considered. The data address a gap in the literature for detailed analysis of traverse measurements downstream of HP NGV engine components. Experimental data are compared with steady and unsteady RANS simulations, allowing benchmarking of typical CFD methods for absolute loss prediction of cooled components. There is relatively limited aerodynamic performance data in the literature for heavily cooled NGVs, and this study represents one of the most comprehensive of its type.


2021 ◽  
pp. 1-23
Author(s):  
Daniel Burdett ◽  
Thomas Povey

Abstract A common objective in the analysis of turbomachinery components (nozzle guide vanes or rotor blades, for example) is to calculate performance parameters, such as total pressure or kinetic energy loss coefficients, from measurements in a non-uniform flow-field. These performance parameters can be represented in a range of ways. For example: line-averages used to compare performance between different radial sections of a 3D component; plane-averages used to assess flow (perhaps loss coefficient) development between different axial planes; and fully mixed-out values used to determine the total loss associated with a component. In this paper, we compare a range of methods for calculating aerodynamic performance parameters including plane-average methods with different weighting schemes and several mixed-out methods. We analyse the sensitivities of the different methods to the axial location of the measurement plane, the radial averaging range, and the exit Mach number. We use high-fidelity experimental data taken in several axial planes downstream of a cascade of engine parts: high pressure (HP) turbine nozzle guide vanes (NGVs) operating at transonic Mach number. The experimental data is complemented by CFD. We discuss the underlying physical mechanisms which give rise to the observed sensitivities. The objective is to provide guidance on the accuracy of each method in a relevant, practical application.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7390
Author(s):  
Lawrence Yule ◽  
Bahareh Zaghari ◽  
Nicholas Harris ◽  
Martyn Hill

The computer modelling of condition monitoring sensors can aide in their development, improve their performance, and allow for the analysis of sensor impact on component operation. This article details the development of a COMSOL model for a guided wave-based temperature monitoring system, with a view to using the technology in the future for the temperature monitoring of nozzle guide vanes, found in the hot section of aeroengines. The model is based on an experimental test system that acts as a method of validation for the model. Piezoelectric wedge transducers were used to excite the S0 Lamb wave mode in an aluminium plate, which was temperature controlled using a hot plate. Time of flight measurements were carried out in MATLAB and used to calculate group velocity. The results were compared to theoretical wave velocities extracted from dispersion curves. The assembly and validation of such a model can aide in the future development of guided wave based sensor systems, and the methods provided can act as a guide for building similar COMSOL models. The results show that the model is in good agreement with the experimental equivalent, which is also in line with theoretical predictions.


Author(s):  
N.I. Troitskiy ◽  
V.D. Molyakov

The article discusses the results of experimental research of the impact of the law of profiling along the stage height on the characteristics of a turbine with an adjustable nozzle guide vanes. The results of the design study have been confirmed, taking into account meridional streamline bending. It is shown that in the stage profiled according to the law of constancy of the product of the radius of the flow path and the tangent of the blade angle the degree of reactivity in the root sections of the blades increases provided that the degree of reactivity at the middle diameter is the same as in a turbine with a constant blade angle, which leads to an increase in the turbine efficiency in modes with a reduced angle of arrangement of blades of the adjustable nozzle guide vanes and the degree of pressure reduction.


2021 ◽  
Author(s):  
Giuseppe Macoretta ◽  
Bernardo Disma Monelli ◽  
Paolo Neri ◽  
Federico Bucciarelli ◽  
Damaso Checcacci ◽  
...  

Abstract An increasing number of turboexpanders are equipped with Nozzle Guide Vane (NGV) as the first stator stage. By varying the throat area of the first stator vane the NGV enables an additional control methodology to the line-up power output allowing higher operational flexibility and higher efficiency at partial load and partial speed. The design of this component might become critical for enabling high expander availability considering its exposure to high temperature, thermal loading, and fluid induced vibrations. This is especially true also considering that the vibration frequencies of this sub-assembly are influenced by internal clearances and by the value of the friction coefficient, which leaves a relevant margin of error when using numerical methods (such as FEM) for predicting the actual structural behavior of this component. In this paper, the design of a full-scale test bench for the determination of both friction coefficients and modal behavior of a nozzle guide vane geometry is described. The bench enables us to simulate the pre-load due to aerodynamic forces on the NGV airfoil simulating the actual working conditions of bushes and bearings.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2890
Author(s):  
Nicolò Cuturi ◽  
Enrico Sciubba

Within a broader national project aimed at the hybridization of a standard city car (the 998 cc Mitsubishi-derived gasoline engine of the Smart W451), our team tackled the problem of improving the supercharger performance and response. The originally conceived design innovation was that of eliminating the mechanical connection between the compressor and the turbine. In the course of the study, it turned out that it is also possible to modify both components to extract extra power from the engine and to use it to recharge the battery pack. This required a redesign of both compressor and turbine. First, the initial configuration was analyzed on the basis of the design data provided by the manufacturer. Then, a preliminary performance assessment of the turbocharged engine allowed us to identify three “typical” operating points that could be used to properly redesign the turbomachinery. It was decided to maintain the radial configuration for both turbine and compressor, but to redesign the latter by adding an inducer. For the turbine, only minor modifications to the nozzle guide vanes (NGV) and rotor blades shape were deemed necessary, while a more substantial modification was in order for the compressor. Fully 3-D computational fluid dynamics simulations of the rotating machines were performed to assess their performance at three operating points: the kick-in point of the original turbo (2000 rpm), the maximum power regime (5500 rpm), and an intermediate point (3500 rpm) close to the minimum specific fuel consumption for the original engine. The results presented in this paper demonstrate that the efficiency of the compressor is noticeably improved for steady operation at all three operating points, and that its choking characteristics have been improved, while its surge line has not been appreciably affected. The net energy recovery was also calculated and demonstrated interesting returns in terms of storable energy in the battery pack.


Sign in / Sign up

Export Citation Format

Share Document