Numerical Study on Film Effectiveness and Heat Transfer Characteristics of Aero-Engine Nose Cone With Hot Air Film

2021 ◽  
Author(s):  
Tao Yang ◽  
Li Zhang ◽  
Xingming Wang ◽  
Huiren Zhu
Author(s):  
Tao Yang ◽  
Li Zhang ◽  
Hui-Ren Zhu ◽  
Xing-Ming Wang

Abstract When the aircraft works in an environment containing supercooled water droplets, it is easy to cause the engine inlet nose cone on the windward side to freeze, which not only affects the performance of the engine, but also leads to flight accidents. Therefore, it is necessary to research the anti-icing technology of aero-engine nose cone components. At present, the air intake cone of the aircraft mainly forms a thermal anti-icing system by means of hot film anti-icing and heating impingement anti-icing. In this paper, the effects of blowing ratio, film hole pitch, hole shape and film hole arrangement method on film heating effectiveness and heat transfer characteristics are studied by numerical simulation methods for the hot film anti-icing system of the nose cone. The results show that with the increase of the blowing ratio, the film heating effectiveness in the downstream area quickly decreases first and then increases, and the range of change aggrandizes. Under the given condition, as the pitch between the film holes decreases, the area covered by the film extends, and the heating effectiveness improves significantly. In the case of high blowing ratio, the advantage of film heating effectiveness of waist-shaped film hole is more apparent. The laterally-averaged film heating effectiveness of the staggered film holes is much higher than that of the aligned film holes. For the characteristics of film heat transfer, the hole pitch and hole shape has little effect on the heat transfer characteristics at low blowing ratio. In the case of high blowing ratio, the heat transfer effect will be greatly weakened when the hole pitch is increased, moreover the heat transfer efficiency of the waist-shaped hole is better. In the region near the exit of the secondary row film hole, the heat transfer characteristics of the staggered structure is stronger than that in the aligned structure. In addition, it is found that the high heat transfer region for staggered arrangement shows W–shaped.


Author(s):  
Salaika Parvin ◽  
Nepal Chandra Roy ◽  
Litan Kumar Saha ◽  
Sadia Siddiqa

A numerical study is performed to investigate nanofluids' flow field and heat transfer characteristics between the domain bounded by a square and a wavy cylinder. The left and right walls of the cavity are at constant low temperature while its other adjacent walls are insulated. The convective phenomena take place due to the higher temperature of the inner corrugated surface. Super elliptic functions are used to transform the governing equations of the classical rectangular enclosure into a system of equations valid for concentric cylinders. The resulting equations are solved iteratively with the implicit finite difference method. Parametric results are presented in terms of streamlines, isotherms, local and average Nusselt numbers for a wide range of scaled parameters such as nanoparticles concentration, Rayleigh number, and aspect ratio. Several correlations have been deduced at the inner and outer surface of the cylinders for the average Nusselt number, which gives a good agreement when compared against the numerical results. The strength of the streamlines increases significantly due to an increase in the aspect ratio of the inner cylinder and the Rayleigh number. As the concentration of nanoparticles increases, the average Nusselt number at the internal and external cylinders becomes stronger. In addition, the average Nusselt number for the entire Rayleigh number range gets enhanced when plotted against the volume fraction of the nanofluid.


2013 ◽  
Vol 378 ◽  
pp. 459-465
Author(s):  
Ya Guo Lu ◽  
Peng Fei Zhu

A calculate method based on ε-NTU model for heat transfer characteristics of shell-tube fuel-cooled heat exchanger of aero-engine lubrication system was built. The heat convection coefficient was obtained by a dimensionless curve (Re~StPr2/3), which was detailed introduced as well. A case study was executed at last. The absolute error of the outlet lubrication of the tube side and the shell side between the value of calculation and experiment was less than ±10°C, and the relative error was less than 6.5%. The absolute error of the heat transferred between calculation and experiment was less than ±0.9kW, and the relative error was less than 7.4%. It indicates that the mothod is available for the investigation of heat transfer characteristics of shell-tube fuel-cooled heat exchanger.


Sign in / Sign up

Export Citation Format

Share Document