Adaptive Iterative Learning Control of Fluidic Muscle Driven Parallel Manipulators for Force Control With Sliding Mode Technique

2021 ◽  
Author(s):  
Xinxin Zhang ◽  
Min Li ◽  
Huafeng Ding
Author(s):  
Xinxin Zhang ◽  
Min Li ◽  
Huafeng Ding

Abstract In this paper, an adaptive iterative learning control (AILC) method combined with sliding mode technique is proposed to improve the force control performance for repeating tasks of fluidic muscle (FM) driven parallel manipulators. Different from the traditional iterative learning control method, the proposed AILC is to learn the controller time-varying parameters rather than to learn the control signals. Since the AILC is sensitive to non-repetitive disturbances, the sliding mode technique is introduced to enhance the robustness. Since no model information involved in the controller design, the proposed method is a complete data-driven method. Hence, the difficulty of obtaining accurate model is avoided. Simulation studies are performed on a two degrees of freedom FM driven parallel manipulator. Simulation results demonstrate that the proposed method can achieve high force tracking performance and robustness.


2021 ◽  
Author(s):  
Xinxin Zhang ◽  
Huafeng Ding ◽  
Min Li ◽  
Andrés Kecskeméthy

Abstract In this paper, an iterative learning control (ILC) method based on sliding mode technique is proposed for hybrid force/position control of robot manipulators. Different from traditional ILC, the main purpose of the proposed ILC is to learn the dynamic parameters rather than the control signals. The sliding mode technique is applied to enhance the robustness of the proposed ILC method against external disturbances and noise. The switching gain of the sliding mode term is time-varying and learned by ILC such that the chattering is suppressed effectively compared to traditional sliding mode control (SMC). Simulation studies are performed on a two degrees of freedom planar parallel manipulator. Simulation results demonstrate that the proposed method can achieve higher force/position tracking performance than the traditional SMC and ILC.


Sign in / Sign up

Export Citation Format

Share Document