On the Passive Noise Control of the Flow-Induced Noise Using Porous Materials

2021 ◽  
Author(s):  
Reon Nishikawa ◽  
Osamu Tershima ◽  
Ayumu Inasawa
Author(s):  
Reon Nishikawa ◽  
Osamu Terashima ◽  
Ayumu Inasawa

Abstract A passive noise control technique for the flow-induced noise using a porous material was studied experimentally. The purpose of this study was to decrease the aerodynamic sound using porous material that permeated only sound and clarify that reduction mechanism. In the experiment, flow-induced noises emitted from two types of rectangular cylinders was measured in a low-noise wind tunnel. One cylinder was made of four aluminum plates and the other was two aluminum and porous material plates each. Measurement results show that the frequency of the distinct tonal noise was different between two cylinders, that frequency was higher for using porous material. It was also found that the sound pressure level of the noise was also different and that of the cylinder using porous material plate was 25 dB smaller at maximum. Velocity field of the wake of cylinders were examined by the PIV measurement and that showed that time and space scale of separated vortices around cylinder were smaller for using porous material. It is assumed that the change of aerodynamic sound was caused by that change in velocity field.


2006 ◽  
Vol 129 (1) ◽  
pp. 94-100 ◽  
Author(s):  
Jing Yuan

The impedance of a passive noise control device is strictly positive real, if the device is installed in noise fields with weak mean flows. Passive noise control devices are, therefore, more reliable than active ones. Active control may be applied to a Helmholtz resonator to introduce electronic resonance. It will affect the impedance Zact of the resonator. A controller may be designed such that (a) Zact is small and resistive at some tunable frequencies; and (b) Re{Zact}⩾0 in the entire frequency range of interest. If criterion (a) is satisfied, the active resonator can suppress duct noise at tunable frequencies. It is difficult to design a controller to satisfy criterion (b) because parameters of the controller depend on acoustic parameters of the noise field. A new method is proposed here to design an active controller to meet both criteria simultaneously. The satisfaction of criterion (b) implies a positive real Zact and a robust active resonator with respect to parameter variation in the noise field. Experimental results are presented to verify the performance of the active resonator.


2022 ◽  
Vol 188 ◽  
pp. 108525
Author(s):  
Lifu Wu ◽  
Lei Wang ◽  
Shuaiheng Sun ◽  
Xinnian Sun

2019 ◽  
Vol 18 (04) ◽  
pp. 1930002 ◽  
Author(s):  
Hsiao Mun Lee ◽  
Zhaomeng Wang ◽  
Kian Meng Lim ◽  
Heow Pueh Lee

Active noise control (ANC), with counteracting sound in exact equal magnitude and opposite phase to the noise to be controlled, is often considered as a potential solution for solving complex noise problems. However, there are both myths and challenges in its implementations. In a crowded city like Singapore, many noise sources from construction site and subway track are located very close to the residential and commercial buildings. It was suggested by few researchers that by placing suitable control speakers at the construction site (working principle of ANC), the noise from the construction site could be prevented from propagating to the surrounding buildings. Similarly, for viaduct or subway track, by placing control speakers along the viaduct or track, the noise generated by the passing trains or vehicles could be reduced based on the principle of ANC technique. However, implementation of ANC technique on these noise issues is not easy as all of these noise control problems involve multiple noise sources with complex or transient frequency spectrum in large three-dimensional/open space. Therefore, the main intention of the present paper is to discuss the current state of the art of this topic as well as to examine the potential application and limitation of the ANC technique in mitigating unwanted noise, particularly in large three-dimensional/open space and with cooperation of passive noise barrier.


1999 ◽  
Author(s):  
Kartik Ramanathan ◽  
Bei Zhu ◽  
Woosuk Chang ◽  
Vasundara V. Varadan ◽  
Vijay K. Varadan

2020 ◽  
Vol 2020.57 (0) ◽  
pp. G025
Author(s):  
Reon NISHIKAWA ◽  
Osamu TERASHIMA ◽  
Ayumu INASAWA ◽  
Toshiro MIYAJIMA

Sign in / Sign up

Export Citation Format

Share Document