A Review of Active Noise Control Applications on Noise Barrier in Three-Dimensional/Open Space: Myths and Challenges

2019 ◽  
Vol 18 (04) ◽  
pp. 1930002 ◽  
Author(s):  
Hsiao Mun Lee ◽  
Zhaomeng Wang ◽  
Kian Meng Lim ◽  
Heow Pueh Lee

Active noise control (ANC), with counteracting sound in exact equal magnitude and opposite phase to the noise to be controlled, is often considered as a potential solution for solving complex noise problems. However, there are both myths and challenges in its implementations. In a crowded city like Singapore, many noise sources from construction site and subway track are located very close to the residential and commercial buildings. It was suggested by few researchers that by placing suitable control speakers at the construction site (working principle of ANC), the noise from the construction site could be prevented from propagating to the surrounding buildings. Similarly, for viaduct or subway track, by placing control speakers along the viaduct or track, the noise generated by the passing trains or vehicles could be reduced based on the principle of ANC technique. However, implementation of ANC technique on these noise issues is not easy as all of these noise control problems involve multiple noise sources with complex or transient frequency spectrum in large three-dimensional/open space. Therefore, the main intention of the present paper is to discuss the current state of the art of this topic as well as to examine the potential application and limitation of the ANC technique in mitigating unwanted noise, particularly in large three-dimensional/open space and with cooperation of passive noise barrier.

2020 ◽  
Vol 10 (18) ◽  
pp. 6160
Author(s):  
Shahin Sohrabi ◽  
Teresa Pàmies Gómez ◽  
Jordi Romeu Garbí

Barriers are increasingly used to protect the pedestrian and neighboring buildings from construction noise activities. This study aims to investigate the suitability of applying active noise control on barriers in a construction site to protect the street area and neighboring buildings. Transducers that are simulated in this work are close to the barrier, and their optimal positions are defined in such a way that the control system has the maximum performance at the neighboring areas close to the construction sites. To begin with, the suitable location of the control sources is found when the total squared pressure is minimized at the positions of noise receivers. The suitable location of the error sensors is, then, found when the control sources are fixed at the position of the previous step and the total squared pressure is minimized at the error sensors. The best location for the error sensors is defined when the maximum reduction is achieved in the target area. It is observed that suitable positions for the transducers depend on the location of target areas for noise control, the position of the noise source, and its operating frequency. In this investigation, a unique configuration is proposed for the transducers that achieves a comparable reduction both at the street area and the neighboring buildings, simultaneously. The results show that the active noise barrier with a height of 2.5 m can achieve an extra insertion loss in the street zone, varies from 9.3 to 16.4 dB (in comparison with passive noise barrier) when the distance of the noise source from the barrier changes in the range of 7 to 1 m, respectively. Those values are of the same order for the passive noise attenuation. Furthermore, similar results are achieved when attempting to cancel the shadow zone of a façade 15 m away from the barrier.


1989 ◽  
Vol 111 (3) ◽  
pp. 337-342 ◽  
Author(s):  
R. J. Silcox ◽  
H. C. Lester ◽  
S. B. Abler

This paper examines the physical mechanisms governing the use of active noise control in an extended volume of a cylindrical shell. Measured data were compared with computed results from a previously derived analytical model based on infinite shell theory. For both the analytical model and experiment, the radiation of external monopoles is coupled to the internal acoustic field through the radial displacement of the thin, elastic, cylindrical shell. An active noise control system was implemented inside the cylinder using a fixed array of discrete monopole sources, all of which lie in the plane of the exterior noise sources. Good agreement between measurement and prediction was obtained for both internal pressure response and overall noise reduction. Attenuations in the source plane greater than 15 dB were recorded along with a uniformly quieted noise environment over an indicative length inside the experimental model. Results indicate that for forced responses with extended axial distributions, axial arrays of control sources may be required. Finally, the Nyquist criteria for the number of azimuthal control sources is shown to provide for effective control over the full cylinder cross section.


1990 ◽  
Vol 87 (S1) ◽  
pp. S62-S62
Author(s):  
Jeffery A. Giordano ◽  
Kenneth A. Cunefare ◽  
Gary Koopmann

2018 ◽  
Vol 8 (11) ◽  
pp. 2291 ◽  
Author(s):  
Kenta Iwai ◽  
Satoru Hase ◽  
Yoshinobu Kajikawa

In this paper, we propose a multichannel active noise control (ANC) system with an optimal reference microphone selector based on the time difference of arrival (TDOA). A multichannel feedforward ANC system using upstream reference signals can reduce various noises such as broadband noise by arranging reference microphones close to noise sources. However, the noise reduction performance of an ANC system degrades when the noise environment changes, such as the arrival direction. This is because some reference microphones do not satisfy the causality constraint that the unwanted noise propagates to the control point faster than the anti-noise used to cancel the unwanted noise. To solve this problem, we propose a multichannel ANC system with an optimal reference microphone selector. This selector chooses the reference microphones that satisfy the causality constraint based on the TDOA. Some experimental results demonstrate that the proposed system can choose the optimal reference microphones and effectively reduce unwanted acoustic noise.


2006 ◽  
Vol 2006 (0) ◽  
pp. 5-6
Author(s):  
Toshihiko Higashi ◽  
Shinya Kijimoto ◽  
Yoichi Kanemitu ◽  
Koichi Matuda ◽  
Ikuma Ikeda ◽  
...  

2006 ◽  
Vol 2006.59 (0) ◽  
pp. 251-252
Author(s):  
Toshihiko Higashi ◽  
Yoichi Kanemitu ◽  
Shinya Kijimoto ◽  
Koichi Matuda

1997 ◽  
Vol 16 (2) ◽  
pp. 109-144 ◽  
Author(s):  
M.O. Tokhi ◽  
R. Wood

This paper presents the development of a neuro-adaptive active noise control (ANC) system. Multi-layered perceptron neural networks with a backpropagation learning algorithm are considered in both the modelling and control contexts. The capabilities of the neural network in modelling dynamical systems are investigated. A feedforward ANC structure is considered for optimum cancellation of broadband noise in a three-dimensional propagation medium. An on-line adaptation and training mechanism allowing a neural network architecture to characterise the optimal controller within the ANC system is developed. The neuro-adaptive ANC algorithm thus developed is implemented within a free-field environment and simulation results verifying its performance are presented and discussed.


2011 ◽  
Vol 2011 (0) ◽  
pp. _628-1_-_628-8_
Author(s):  
Xnn WANG ◽  
Shinya KIJIMOTO ◽  
Yosuke KOBA

Sign in / Sign up

Export Citation Format

Share Document