Application of a Fast-Stabilizing Frequency Domain Parameter Estimation Method

2001 ◽  
Vol 123 (4) ◽  
pp. 651-658 ◽  
Author(s):  
H. Van der Auweraer ◽  
P. Guillaume ◽  
P. Verboven ◽  
S. Vanlanduit

A new noniterative frequency domain parameter estimation technique is proposed. It is based on a weighted total least squares approach, starting from multiple input multiple output frequency response functions. One of the specific advantages of the technique lies in the very stable identification of the system poles as a function of the specified system order, leading to easy-to-interpret stabilization diagrams. This implies a potential for automating the method and to apply it to “difficult” estimation cases. Several real-life case studies are discussed, one related to holographic modal analysis in the medium frequency range, one to the modal testing of a fully trimmed vehicle.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Yuan Ren ◽  
Jiancheng Fang

This paper develops a complex-coefficient frequency domain stability analysis method for a class of cross-coupled two-dimensional antisymmetrical systems, which can greatly simplify the stability analysis of the multiple-input multiple-output (MIMO) system. Through variable reconstruction, the multiple-input multiple-output (MIMO) system is converted into a single-input single-output (SISO) system with complex coefficients. The pole locations law of the closed-loop system after the variable reconstruction has been revealed, and the controllability as well as observability of the controlled plants before and after the variable reconstruction has been studied too, and then the classical Nyquist stability criterion is extended to the complex-coefficient frequency domain. Combined with the rigid magnetically suspended rotor (MSR) system with heavy gyroscopic effects, corresponding stability criterion has been further developed. Compared with the existing methods, the developed criterion for the rigid MSR system not only accurately predicts the absolute stability of the different whirling modes, but also directly demonstrates their relative stability, which greatly simplifies the analysis, design, and debugging of the control system.


2018 ◽  
Vol 173 ◽  
pp. 02015
Author(s):  
Binbin Li ◽  
Weixiong Bai ◽  
Qin Zhang ◽  
Guimei Zheng ◽  
Mingliang Zhang ◽  
...  

Joint DOA-range-polarization estimation with a novel radar system, i.e., spatially separated polarization sensitive random frequency diverse array based on multiple-input multiple-output (SS-PSRFDA-MIMO) radar, is discussed. The proposed array can obtain not only unambiguous range estimation but also polarization parameter estimation. Firstly, the signal model of SS-PSRFDA-MIMO radar is constructed. Secondly, dimension reduction multiple signal classification (DR-MUSIC) algorithm is extended to parameter estimation with the proposed array. Last, simulations demonstrate the proposed algorithm is effective to estimate parameter, and the performance of proposed array is better than that of polarization sensitive frequency diverse array based on MIMO radar. It is worth mentioning that the Cramér–Rao lower bound (CRLB) of range estimation with the proposed array is much lower than that of PSFDA-MIMO radar.


2014 ◽  
Vol 513-517 ◽  
pp. 3385-3388
Author(s):  
Li Li

The problem of Cramér-Rao bound for parameter estimation in wideband bistatic Multiple-Input Multiple-Output (MIMO) radar system is considered. In many applications, it is not appropriate to approximate the wideband signal by the narrowband model. In this paper, we propose a new wideband signal model to accurately estimate parameter for wideband signals from a moving target. The Cramér-Rao bound for target parameter estimation is derived and computed in closed form which shows that the optimal performance is achieved. Target location and parameter estimation performances are evaluated and studied theoretically and via simulations.


Sign in / Sign up

Export Citation Format

Share Document