A Numerical Study of Flow and Heat Transfer in Rotating Rectangular Channels AR=4 With 45 deg Rib Turbulators by Reynolds Stress Turbulence Model

2003 ◽  
Vol 125 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Mohammad Al-Qahtani ◽  
Hamn-Ching Chen ◽  
Je-Chin Han

Computations were performed to study three-dimensional turbulent flow and heat transfer in stationary and rotating 45 deg ribbed rectangular channels for which experimental heat transfer data were available. The channel aspect ratio (AR) is 4:1, the rib height-to-hydraulic diameter ratio e/Dh is 0.078 and the rib-pitch-to-height ratio P/e is 10. The rotation number and inlet coolant-to-wall density ratios, Δρ/ρ, were varied from 0.0 to 0.28 and from 0.122 to 0.40, respectively, while the Reynolds number was fixed at 10,000. Also, two channel orientations (β=90deg and 135 deg from the rotation direction) were investigated with focus on the high rotation and high density ratios effects on the heat transfer characteristics of the 135 deg orientation. These results show that, for high rotation and high density ratio, the rotation induced secondary flow overpowered the rib induced secondary flow and thus change significantly the heat transfer characteristics compared to the low rotation low density ratio case. A multi-block Reynolds-Averaged Navier-Stokes (RANS) method was employed in conjunction with a near-wall second-moment turbulence closure. In the present method, the convective transport equations for momentum, energy, and turbulence quantities are solved in curvilinear, body-fitted coordinates using the finite-analytic method.

Author(s):  
Mohammad Al-Qahtani ◽  
Hamn-Ching Chen ◽  
Je-Chin Han

Computations were performed to study three-dimensional turbulent flow and heat transfer in a rotating smooth and 45° ribbed rectangular channels for which heat transfer data were available. The channel aspect ratio (AR) is 4:1, the rib height-to-hydraulic diameter ratio (e/Dh) is 0.078 and the rib-pitch-to-height ratio (P/e) is 10. The rotation number and inlet coolant-to-wall density ratios, Δρ/ρ, were varied from 0.0 to 0.28 and from 0.122 to 0.40, respectively, while the Reynolds number was fixed at 10,000. Also, two channel orientations (β − 90° and 135° from the rotation direction) were investigated with focus on the high rotation and high density ratios effects on the heat transfer characteristics of the 135° orientation. These results show that, for high rotation and high density ratio, the rotation induced secondary flow overpowered the rib induced secondary flow and thus change significantly the heat transfer characteristics compared to the low rotation low density ratio case. A multi-block Reynolds-Averaged Navier-Stokes (RANS) method was employed in conjunction with a near-wall second-moment turbulence closure. In the present method, the convective transport equations for momentum, energy, and turbulence quantities are solved in curvilinear, body-fitted coordinates using the finite-analytic method.


Author(s):  
Feng Zhang ◽  
Xinjun Wang ◽  
Jun Li ◽  
Daren Zheng ◽  
Junfei Zhou

The present work represents a numerical study on the flow and heat transfer characteristics in rectangular channels with protrusion-grooved turbulators. The Reynolds averaged Navier-Stokes equations, coupled with SST turbulence model, are adopted and solved. In this paper, six geometric protrusion shapes (circular, rectangular, triangular, trapezoidal, circular with leading round concave and circular with trailing round concave) are selected to perform the study. The flow structure, heat transfer enhancement, friction factor as well as thermal performance factor of the rectangular channel fitted with combined groove and different protrusions have been obtained at the Reynolds number ranging from 5000 to 20000. The results indicate that the protrusion shapes affect the velocity distribution near the groove surface. The case of circular protrusion with leading round concave provides the highest overall heat transfer enhancement, while it also causes the highest pressure loss penalty. The case of rectangular protrusion has the lowest overall heat transfer enhancement with high pressure loss penalty. The case of circular protrusion has similar overall heat transfer enhancement with cases of trapezoidal protrusion as well as circular protrusion with trailing round concave, but the pressure loss penalty of the case of circular protrusion is the lowest. In addition, the best overall thermal performance can be observed for circular protrusion-grooved channel.


2002 ◽  
Vol 124 (2) ◽  
pp. 242-250 ◽  
Author(s):  
Mohammad Al-Qahtani ◽  
Yong-Jun Jang ◽  
Hamn-Ching Chen ◽  
Je-Chin Han

Numerical predictions of three-dimensional flow and heat transfer are presented for a rotating two-pass rectangular channel with 45-deg rib turbulators and channel aspect ratio of 2:1. The rib height-to-hydraulic diameter ratio e/Dh is 0.094 and the rib-pitch-to-height ratio P/e is 10. Two channel orientations are studied: β=90deg and 135 deg, corresponding to the mid-portion and the trailing edge regions of a turbine blade, respectively. The focus of this study is twofold; namely, to investigate the effect of the channel aspect ratio and the channel orientation on the nature of the flow and heat transfer enhancement. A multi-block Reynolds-averaged Navier-Stokes (RANS) method was employed in conjunction with a near-wall second-moment turbulence closure. In the present method, the convective transport equations for momentum, energy, and turbulence quantities are solved in curvilinear, body-fitted coordinates using the finite-analytic method. The numerical results compare reasonably well with experimental data for both stationary and rotating rectangular channels with rib turbulators at Reynolds number (Re) of 10,000, rotation number (Ro) of 0.11 and inlet coolant-to-wall density ratio (Δρ/ρ) of 0.115.


Author(s):  
Mohammad Al-Qahtani ◽  
Yong-Jun Jang ◽  
Hamn-Ching Chen ◽  
Je-Chin Han

Numerical predictions of three-dimensional flow and heat transfer are presented for a rotating two-pass rectangular channel with 45° rib turbulators and channel aspect ratio of 2:1. The rib height-to-hydraulic diameter ratio (e/Dh) is 0.094 and the rib-pitch-to-height ratio (P/e) is 10. Two channel orientations are studied: β = 90° and β = 135° corresponding to the mid-portion and the trailing edge regions of a turbine blade, respectively. The focus of this study is twofold; namely, to investigate the effect of the channel aspect ratio and the channel orientation on the nature of the flow and heat transfer enhancement. A multi-block Reynolds-Averaged Navier-Stokes (RANS) method was employed in conjunction with a near-wall second-moment turbulence closure. In the present method, the convective transport equations for momentum, energy, and turbulence quantities are solved in curvilinear, body-fitted coordinates using the finite-analytic method. The numerical results compare reasonably well with experimental data for both stationary and rotating rectangular channels with rib turbulators at Reynolds number (Re) of 10,000, rotation number (Ro) of 0.11 and inlet coolant-to-wall density ratio (Δρ/ρ) of 0.115.


Sign in / Sign up

Export Citation Format

Share Document