Surface Enhancement of Al2O3 Fiber With Nanosized Al2O3 Particles Using A Dry Mechanical Coating Process

2003 ◽  
Vol 125 (2) ◽  
pp. 163-169 ◽  
Author(s):  
Nowarat Coowanitwong ◽  
Chang-Yu Wu ◽  
Judy Nguyen ◽  
Mei Cai ◽  
Martin Ruthkosky ◽  
...  

Currently, fabrication of composite materials is of great interest in industry. By combining materials of different properties, we can produce new composite materials with synergetic functionality that individual materials do not possess. In this study, Al2O3 nanosized particles were coated on Al2O3 fiber substrates using a dry mechanical coating technique employing high shear and compression forces. The materials thus synthesized had high surface area with good dispersion for enhanced reactivity and were strong to sustain rigorous operation. Operating parameters, including rotor speed, processing time and initial loading percentage were varied to study their effects on the coating condition. The experimental results showed that the product surface area increased as the nanoparticle loading increased. The dispersion of nanoparticles improved as the processing time increased. A higher rotor speed resulted in a shorter product length while the nanoparticle loading had no effect on the product length. The durability test, conducted in a fluidized bed, indicated no significant change of the coating layer after 7 days of continuous testing.

Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3602 ◽  
Author(s):  
Neel Narayan ◽  
Ashokkumar Meiyazhagan ◽  
Robert Vajtai

Nanoparticles play a significant role in various fields ranging from electronics to composite materials development. Among them, metal nanoparticles have attracted much attention in recent decades due to their high surface area, selectivity, tunable morphologies, and remarkable catalytic activity. In this review, we discuss various possibilities for the synthesis of different metal nanoparticles; specifically, we address some of the green synthesis approaches. In the second part of the paper, we review the catalytic performance of the most commonly used metal nanoparticles and we explore a few roadblocks to the commercialization of the developed metal nanoparticles as efficient catalysts.


2021 ◽  
Author(s):  
Zhuang Mo ◽  
Tongyang Shi ◽  
Seungkyu Lee ◽  
Yongbeom Seo ◽  
J. Stuart Bolton

Author(s):  
Kailun Yang ◽  
Recep Kas ◽  
Wilson A. Smith

<p>This study evaluated the performance of the commonly used strong buffer electrolytes, i.e. phosphate buffers, during CO<sub>2</sub> electroreduction in neutral pH conditions by using in-situ surface enhanced infrared absorption spectroscopy (SEIRAS). Unfortunately, the buffers break down a lot faster than anticipated which has serious implications on many studies in the literature such as selectivity and kinetic analysis of the electrocatalysts. Increasing electrolyte concentration, surprisingly, did not extend the potential window of the phosphate buffers due to dramatic increase in hydrogen evolution reaction. Even high concentration phosphate buffers (1 M) break down within the potentials (-1 V vs RHE) where hydrocarbons are formed on copper electrodes. We have extended the discussion to high surface area electrodes by evaluating electrodes composed of copper nanowires. We would like highlight that it is not possible to cope with high local current densities on these high surface area electrodes by using high buffer capacity solutions and the CO<sub>2</sub> electrocatalysts are needed to be evaluated by casting thin nanoparticle films onto inert substrates as commonly employed in fuel cell reactions and up to now scarcely employed in CO<sub>2</sub> electroreduction. In addition, we underscore that normalization of the electrocatalytic activity to the electrochemical active surface area is not the ultimate solution due to concentration gradient along the catalyst layer.This will “underestimate” the activity of high surface electrocatalyst and the degree of underestimation will depend on the thickness, porosity and morphology of the catalyst layer. </p> <p> </p>


Nanoscale ◽  
2015 ◽  
Vol 7 (25) ◽  
pp. 10974-10981 ◽  
Author(s):  
Xiulin Yang ◽  
Ang-Yu Lu ◽  
Yihan Zhu ◽  
Shixiong Min ◽  
Mohamed Nejib Hedhili ◽  
...  

High surface area FeP nanosheets on a carbon cloth were prepared by gas phase phosphidation of electroplated FeOOH, which exhibit exceptionally high catalytic efficiency and stability for hydrogen generation.


Author(s):  
Sisir Maity ◽  
Dheeraj Kumar Singh ◽  
Divya Bhutani ◽  
Suchitra Prasad ◽  
Umesh V. Waghmare ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document