Effect of Fin Geometry on Condensation of R407C in a Staggered Bundle of Horizontal Finned Tubes

2003 ◽  
Vol 125 (4) ◽  
pp. 653-660 ◽  
Author(s):  
H. Honda ◽  
N. Takata ◽  
H. Takamatsu ◽  
J. S. Kim ◽  
K. Usami

Experimental results are presented that show the effect of fin geometry on condensation of downward flowing zeotropic refrigerant mixture R407C in a staggered bundle of horizontal finned tubes. Two types of conventional low-fin tubes and three types of three-dimensional-fin tubes were tested. The refrigerant mass velocity ranged from 4 to 23 kg/m2 s and the condensation temperature difference from 3 to 12 K. The measured condensation heat transfer coefficient was lower than the previous results for R134a, with the difference being more significant for smaller mass velocity. The effect of fin geometry on the condensation heat transfer coefficient was less significant for R407C than for R134a. The effect of condensate inundation was more significant for the three-dimensional-fin tubes than for the low-fin tubes. By using the dimensionless heat transfer correlation for the condensate film that was based on the experimental data for R134a, a superficial vapor-phase heat transfer coefficient was obtained for condensation of R407C. The vapor-phase heat transfer coefficient showed characteristics similar to the vapor-phase mass transfer coefficient that was obtained in the previous study for R123/R134a.

2011 ◽  
Vol 354-355 ◽  
pp. 753-758
Author(s):  
Qi Wei Chen ◽  
Xin Ping Ouyang

An experimental study of condensation heat transfer of R134a on horizontal inner enhanced tubes was conducted. The tested tubes were inner-micro-fin tubes, named tube A and tube B, respectively. The tested pieces were double-pipe condensers. The glycol solution flowed in the space between outer surface of the enhanced tube and inner surface of outer tube. In the experiment, condensing temperature inside the enhanced tube was 51°C, and the flow velocity of glycol solution was 3.35m/s. The inlet temperature of glycol solution changed according to mass velocity of refrigerant, to maintain certain degree of undercooling of outlet refrigerant. The research showed that the condensation heat transfer coefficient of both tubes increased with the increasing mass velocity of refrigerant. when the mass velocity of refrigerant increased from 300kg/m2s to 700kg/m2s, the condensation heat transfer coefficient in tube A was 1.87% to 6.28% higher than that of tube B. However, the flow resistance of the refrigerant in tube B was 9.56% to 11.05% higher than in tube A. The structure of tube A was superior to that of tube B.


Author(s):  
Wei Li ◽  
Dan Huang ◽  
Zan Wu ◽  
Hong-Xia Li ◽  
Zhao-Yan Zhang ◽  
...  

An experimental investigation was performed for convective condensation of R410A inside four micro-fin tubes with the same outside diameter (OD) 5 mm and helix angle 18°. Data are for mass fluxes ranging from about 180 to 650 kg/m2s. The nominal saturation temperature is 320 K, with inlet and outlet qualities of 0.8 and 0.1, respectively. The results suggest that Tube 4 has the best thermal performance for its largest condensation heat transfer coefficient and relatively low pressure drop penalty. Condensation heat transfer coefficient decreases at first and then increases or flattens out gradually as G decreases. This complex mass-flux effect may be explained by the complex interactions between micro-fins and fluid. The heat transfer enhancement mechanism is mainly due to the surface area increase over the plain tube at large mass fluxes, while liquid drainage and interfacial turbulence play important roles in heat transfer enhancement at low mass fluxes. In addition, the experimental data was analyzed using seven existing pressure-drop and four heat-transfer models to verify their respective accuracies.


2015 ◽  
Vol 138 (3) ◽  
Author(s):  
Zhen-ping Wan ◽  
Xiao-wu Wang ◽  
Xiao-xia Zhang ◽  
Yong Tang

The third-generation enhanced heat transfer technologies, such as three-dimensional fin and dimple, are still important means of improving energy efficiency. This paper analyzes the condensation heat transfer performances of three edge-shaped finned tubes that were fabricated using the plowing–extruding process. Experimental results show that the shell-side heat transfer coefficient decreases with increases of heat flux and temperature difference between wall and vapor. The edge-shaped finned tubes exhibit better heat transfer performance than smooth tubes. At the identical temperature difference between the wall and the vapor, the shell-side heat transfer coefficient of the edge-shaped finned tubes is approximately 1.7–2.6 times larger than that of the smooth tubes. At the identical temperature difference between the wall and the vapor, the shell-side heat transfer coefficient of edge-shaped finned tubes is also higher than the reported value in the literature. The excellent performance of the edge-shaped finned tubes comes from the coordination of enhancement from the three-dimensional fins, dimples, and grooves. Finned tubes with grooves fabricated along the left direction have higher and thinner fins and therefore show better heat transfer performance. The shell-side heat transfer coefficients of edge-shaped finned tubes increase with plowing–extruding depth and feed increasing.


2000 ◽  
Vol 122 (3) ◽  
pp. 613-620 ◽  
Author(s):  
Z. Guo ◽  
N. K. Anand

An analytical model to predict condensation heat transfer coefficient in a horizontal rectangular channel was developed. The total local condensation heat transfer coefficient was represented as the weighted average of heat transfer coefficients for each wall. The analytical predictions compared well with the experimental data on the condensation of R-410A in a rectangular channel. The mean deviation was 6.75 percent. [S0022-1481(00)00503-X]


Author(s):  
Desong Yang ◽  
Zhichuan Sun ◽  
Wei Li

Abstract An experimental investigation of shell-side flow condensation heat transfer was performed on advanced three-dimensional surface-enhanced tubes, including a herringbone micro-fin tube and a newly-developed 1-EHT tube. An equivalent plain tube was also tested for performance comparison. All of the test tubes have similar geometry parameters (inner diameter 11.43mm, outer diameter 12.7mm). Tests were conducted using R410A as the working fluid at a condensation saturation temperature of 45 °C, covering the mass flux range of 10–55 kg/(m2·s) with an inlet quality of 0.8 and an outlet quality of 0.1. Experimental results showed that the plain tube exhibits a better condensation heat transfer performance when compared to the enhanced tubes. Moreover, the mass flux has a significant influence on the heat transfer coefficient for shell-side condensation: the condensation heat transfer coefficient of plain tube decreases when the refrigerant mass flux becomes larger, while the heat transfer coefficient of herringbone tube shows a non-monotonic trend and the heat transfer coefficient of the 1-EHT tube gets higher with increasing refrigerant mass flux. Besides, A new prediction model based on the Cavallini’s equation was developed to predict the condensing coefficient of the three test tubes, and the mean absolute error of the improved equations is less than 4%.


Sign in / Sign up

Export Citation Format

Share Document