A New Generalized Carbon Exergy Tax: An Effective Rule to Control Global Warming

2003 ◽  
Vol 125 (4) ◽  
pp. 972-978 ◽  
Author(s):  
A. Traverso ◽  
A. F. Massardo ◽  
M. Santarelli ◽  
M. Cali

An instrument for promoting CO2 emission reductions, taking the Kyoto Protocol goal into account, could be the assignment to energy conversion plants of a monetary charge linked to their specific emission intensity, usually called carbon tax. There are two main problems closely connected with this approach: the estimation of the charge (that must be related to the “external” cost associated with CO2 emission) and the choice of the strategy to determine the amount of the imposed charge. In this paper an analytical procedure proposed by the authors and called carbon exergy tax (CET) for the evaluation of CO2 emission externalities is presented. It is based on the thermoeconomic analysis of energy systems, which allows second law losses to be quantified in monetary terms: the resulting cost represents the taxation that is to be applied to the energy system under examination, calculated without any arbitrary assumption. Since the complete procedure of the CET evaluation is too complex to become a feasible instrument of energy policy, hereby, after applying the procedure to some conventional and advanced power plants, gas, oil, and coal-fueled, a new generalized approach, based on the results of the complete CET procedure, is proposed. The generalized CET evaluation requires much less information about the energy system and thus a simple and effective energy policy rule to manage global warming is obtained and available.

Author(s):  
A. Traverso ◽  
M. Santarelli ◽  
A. F. Massardo ◽  
M. Cali`

An instrument for promoting CO2 emission reductions, taking the Kyoto Protocol goal into account, could be the assignment to energy conversion plants of a monetary charge linked to their specific emission intensity, usually called Carbon Tax. There are two main problems closely connected with this approach: the estimation of the charge (that must be related to the “external” cost associated with CO2 emission) and the choice of the strategy to determine the amount of the imposed charge. In this paper an analytical procedure proposed by the authors and called Carbon Exergy Tax (CET) for the evaluation of CO2 emission externalities is presented. It is based on the thermoeconomic analysis of energy systems, which allows Second Law losses to be quantified in monetary terms: the resulting cost represents the taxation that is to be applied to the energy system under examination, calculated without any arbitrary assumption. Since the complete procedure of the CET evaluation is too complex to become a feasible instrument of energy policy, hereby, after applying the procedure to some conventional and advanced power plants, gas-, oil- and coal-fuelled, a new generalised approach, based on the results of the complete CET procedure, is proposed. The generalised CET evaluation requires much less information about the energy system and thus a simple and effective energy policy rule to manage global warming is obtained and available.


2019 ◽  
Vol 11 (9) ◽  
pp. 2530 ◽  
Author(s):  
Ervin Saracevic ◽  
Daniel Koch ◽  
Bernhard Stuermer ◽  
Bettina Mihalyi ◽  
Angela Miltner ◽  
...  

Demand-oriented power generation by power plants is becoming increasingly important due to the rising share of intermittent power sources in the energy system. Biogas plants can contribute to electricity grid stability through flexible power generation. This work involved conducting an economic and global warming potential (GWP) assessment of power generation with biogas plants that focused on the Austrian biogas sector. Twelve biogas plant configurations with electric rated outputs ranging from 150–750 kW and different input material compositions were investigated. The results from the economic assessment reveal that the required additional payment (premium) to make power generation economically viable ranges from 158.1–217.3 € MWh−1. Further, the GWP of biogas plant setups was analyzed using life cycle assessment. The results range from −0.42 to 0.06 t CO2 eq. MWh−1 and show that the 150 kW plant configurations yield the best outcome regarding GWP. Electricity from biogas in all scenarios outperformed the compared conventional electricity sources within the GWP. Greenhouse gas (GHG) mitigation costs were calculated by relating the needed premium to the CO2 eq. saving potential and range from 149.5–674.1 € (t CO2 eq.)−1.


2021 ◽  
pp. 105355
Author(s):  
Jiali Zheng ◽  
Hongbo Duan ◽  
Sheng Zhou ◽  
Shouyang Wang ◽  
Ji Gao ◽  
...  

Author(s):  
Thomas A. Ulrich ◽  
Roger Lew ◽  
Ronald L. Boring ◽  
Torrey Mortenson ◽  
Jooyoung Park ◽  
...  

Nuclear power plants are looking towards integrated energy systems to address the challenges faced by increasing competition from renewable energy and cheap natural gas in wholesale electricity markets. Electricity-hydrogen hybrid operations is one potential technology being explored. As part of this investigation a human factors team was integrated into the overall engineering project to develop a human system interface (HSI) for a novel system to extract steam for a coupled hydrogen production process. This paper presents the process used to perform the nuclear specific human factors engineering required to develop the HSI for this novel and unprecedented system. Furthermore, the early integration of the human factors team and the meaningful improvements to the engineering of the system itself in addition to the successful development of the HSI for this particular application are described. Lastly, the HSI developed is presented to demonstrate the culmination of the process and disseminate a potential HSI design for electricity-hydrogen hybrid operations that may be useful for others exploring similar integrated energy systems concepts.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3437
Author(s):  
Andreas Rosenstiel ◽  
Nathalie Monnerie ◽  
Jürgen Dersch ◽  
Martin Roeb ◽  
Robert Pitz-Paal ◽  
...  

Global trade of green hydrogen will probably become a vital factor in reaching climate neutrality. The sunbelt of the Earth has a great potential for large-scale hydrogen production. One promising pathway to solar hydrogen is to use economically priced electricity from photovoltaics (PV) for electrochemical water splitting. However, storing electricity with batteries is still expensive and without storage only a small operating capacity of electrolyser systems can be reached. Combining PV with concentrated solar power (CSP) and thermal energy storage (TES) seems a good pathway to reach more electrolyser full load hours and thereby lower levelized costs of hydrogen (LCOH). This work introduces an energy system model for finding cost-optimal designs of such PV/CSP hybrid hydrogen production plants based on a global optimization algorithm. The model includes an operational strategy which improves the interplay between PV and CSP part, allowing also to store PV surplus electricity as heat. An exemplary study for stand-alone hydrogen production with an alkaline electrolyser (AEL) system is carried out. Three different locations with different solar resources are considered, regarding the total installed costs (TIC) to obtain realistic LCOH values. The study shows that a combination of PV and CSP is an auspicious concept for large-scale solar hydrogen production, leading to lower costs than using one of the technologies on its own. For today’s PV and CSP costs, minimum levelized costs of hydrogen of 4.04 USD/kg were determined for a plant located in Ouarzazate (Morocco). Considering the foreseen decrease in PV and CSP costs until 2030, cuts the LCOH to 3.09 USD/kg while still a combination of PV and CSP is the most economic system.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2879
Author(s):  
Xinxin Liu ◽  
Nan Li ◽  
Feng Liu ◽  
Hailin Mu ◽  
Longxi Li ◽  
...  

Optimal design of regional integrated energy systems (RIES) offers great potential for better managing energy sources, lower costs and reducing environmental impact. To capture the transition process from fossil fuel to renewable energy, a flexible RIES, including the traditional energy system (TES) based on the coal and biomass based distributed energy system (BDES), was designed to meet a regional multiple energy demand. In this paper, we analyze multiple scenarios based on a new rural community in Dalian (China) to capture the relationship among the energy supply cost, increased share of biomass, system configuration transformation, and renewable subsidy according to regional CO2 emission abatement control targets. A mixed integer linear programming (MILP) model was developed to find the optimal solutions. The results indicated that a 40.58% increase in the share of biomass in the RIES was the most cost-effective way as compared to the separate TES and BDES. Based on the RIES with minimal cost, by setting a CO2 emission reduction control within 40%, the RIES could ensure a competitive total annual cost as compared to the TES. In addition, when the reduction control exceeds 40%, a subsidy of 53.83 to 261.26 RMB/t of biomass would be needed to cover the extra cost to further increase the share of biomass resource and decrease the CO2 emission.


Sign in / Sign up

Export Citation Format

Share Document