Volume 2: Turbo Expo 2002, Parts A and B
Latest Publications


TOTAL DOCUMENTS

132
(FIVE YEARS 0)

H-INDEX

9
(FIVE YEARS 0)

Published By ASMEDC

079183607x

Author(s):  
Giacomo Bisio ◽  
Alessandro Bosio ◽  
Marco Cartesegna ◽  
Giuseppe Rubatto

The fossil fuel reserves are limited. In addition, usable energy supply has a considerable impact on the environment, even if some effects, which are usually alleged, are far from being fully established. Natural gas is often found in remote locations far from developed industrial nations. Where possible, the gas is transported by pipeline to the end user. However, where oceans separate the gas source and the user, or there are other difficulties, the only viable way to transport the gas is to convert it into liquid natural gas (LNG) and to convey it using insulated LNG tankers. This paper outlines the results of an examination of a complex system, employing solar energy, for the production of electrical energy and the vaporization and superheating of LNG. It is to be remarked that, differently from the usual combined systems, both the thermal source and the thermal sink are exergy sources.


Author(s):  
Zheji Liu ◽  
D. Lee Hill ◽  
Roman Motriuk

Centrifugal compressors used in the pipeline market generate very strong noise, which is typically dominated by the blade passing frequency and its higher harmonics. The high level noise is not only very disturbing to the people living nearby the installation site but also causes expensive structural failures in the downstream piping. A novel design of Helmholtz array has been developed to address this type of noise problem. Computational studies show that the installation of the Helmholtz array acoustic liner on the compressor diffuser walls is very effective in reducing noise level of the compressor, especially the dominant blade passing frequency noise. The acoustic liner design has been built and tested at an installation site by the customer. The data clearly shows that the use of acoustic liners is indeed very effective in the reduction of both the noise and the vibration levels of the machine.


Author(s):  
H. Jericha ◽  
E. Go¨ttlich

The gas turbine system GRAZ CYCLE has been thoroughly studied in terms of thermodynamics and turbomachinery layout. What is to be presented here is a prototype design for an industrial size plant, suited for NG-fuel and coal and heavy fuel oil gasification products, capable to retain the CO2 from combustion and at the same time able to achieve maximum thermal efficiency. The authors hope for an international cooperation to make such a plant available within a few years.


Author(s):  
S. M. Camporeale ◽  
B. Fortunato ◽  
M. Mastrovito

A novel high-fidelity real-time simulation code based on a lumped, non-linear representation of gas turbine components is presented. The aim of the work is to develop a general-purpose simulation code useful for setting up and testing control equipments. The mathematical model and the numerical procedure are specially developed in order to efficiently solve the set of algebraic and ordinary differential equations that describe the dynamic behavior of the gas turbine engine. The paper presents the model and the adopted solver procedure. The code, developed in Matlab-Simulink using an object-oriented approach, is flexible and can be easily adapted to any kind of plant configuration. For high-fidelity purposes, the mathematical model takes into account the actual composition of the working gases and the variation of the specific heats with the temperature, including a stage-by-stage model of the air-cooled expansion. Simulation tests of the transients after load rejection have been carried out for a single-shaft heavy-duty gas turbine and a double-shaft industrial engine. Time plots of the main variables that describe the gas turbine dynamic behavior are shown and the results regarding the computational time per time step are discussed.


Author(s):  
Dieter Bohn ◽  
Nathalie Po¨ppe ◽  
Joachim Lepers

The present paper reports a detailed technological assessment of two concepts of integrated micro gas turbine and high temperature (SOFC) fuel cell systems. The first concept is the coupling of micro gas turbines and fuel cells with heat exchangers, maximising availability of each component by the option for easy stand-alone operation. The second concept considers a direct coupling of both components and a pressurised operation of the fuel cell, yielding additional efficiency augmentation. Based on state-of-the-art technology of micro gas turbines and solid oxide fuel cells, the paper analyses effects of advanced cycle parameters based on future material improvements on the performance of 300–400 kW combined micro gas turbine and fuel cell power plants. Results show a major potential for future increase of net efficiencies of such power plants utilising advanced materials yet to be developed. For small sized plants under consideration, potential net efficiencies around 70% were determined. This implies possible power-to-heat-ratios around 9.1 being a basis for efficient utilisation of this technology in decentralised CHP applications.


Author(s):  
Daniel E. Caguiat

The Naval Surface Warfare Center, Carderock Division (NSWCCD) Gas Turbine Emerging Technologies Code 9334 was tasked by NSWCCD Shipboard Energy Office Code 859 to research and evaluate fouling resistant compressor coatings for Rolls Royce Allison 501-K Series gas turbines. The objective of these tests was to investigate the feasibility of reducing the rate of compressor fouling degradation and associated rate of specific fuel consumption (SFC) increase through the application of anti-fouling coatings. Code 9334 conducted a market investigation and selected coatings that best fit the test objective. The coatings selected were Sermalon for compressor stages 1 and 2 and Sermaflow S4000 for the remaining 12 compressor stages. Both coatings are manufactured by Sermatech International, are intended to substantially decrease blade surface roughness, have inert top layers, and contain an anti-corrosive aluminum-ceramic base coat. Sermalon contains a Polytetrafluoroethylene (PTFE) topcoat, a substance similar to Teflon, for added fouling resistance. Tests were conducted at the Philadelphia Land Based Engineering Site (LBES). Testing was first performed on the existing LBES 501-K17 gas turbine, which had a non-coated compressor. The compressor was then replaced by a coated compressor and the test was repeated. The test plan consisted of injecting a known amount of salt solution into the gas turbine inlet while gathering compressor performance degradation and fuel economy data for 0, 500, 1000, and 1250 KW generator load levels. This method facilitated a direct comparison of compressor degradation trends for the coated and non-coated compressors operating with the same turbine section, thereby reducing the number of variables involved. The collected data for turbine inlet, temperature, compressor efficiency, and fuel consumption were plotted as a percentage of the baseline conditions for each compressor. The results of each plot show a decrease in the rates of compressor degradation and SFC increase for the coated compressor compared to the non-coated compressor. Overall test results show that it is feasible to utilize anti-fouling compressor coatings to reduce the rate of specific fuel consumption increase associated with compressor performance degradation.


Author(s):  
Malath I. Arar

Gas Turbine, GT, control methodology applied to power generation is being evaluated. Corrected parameter control methodology has been adopted for this purpose. This method uses the corrected physical ambient conditions such as pressure, temperature and humidity in controlling the GT operations. Humidity correction becomes increasingly important in this control scheme. The following are the reasons for accurate and robust humidity measurement: (1) Humidity measurement is important to the operation control of the dry low NOX, DLN, combustor system. (2) GT inlet performance enhancing devices, such as evaporative coolers and inlet foggers, depend upon the accurate humidity measurement to determine the amount of water needed for inlet temperature depression. (3) Humidity measurement is used to determine the amount of water to be injected in the combustor for NOX abatement when running on liquid fuel as an alternative to natural gas fuel. In order to obtain accurate and reliable humidity readings, several commercially available humidity sensors were extensively tested and evaluated in a controlled laboratory environment. The sensors were tested for their measurement accuracy, saturation conditions, power interruption and surge, sudden temperature changes and medium air speed. Test ambient temperature ranges from −30 °C to 50 °C. This covers the operating ambient conditions range for the Gas Turbine. The test criterion is that the error in the response of the sensor shall not exceed ±1 °C from the test reference for all the tests conducted on the sensors. The combustion requirements for Dry Low NOX operations and mode transfer dictate this criterion. Also, as a DLN requirement, error in specific humidity shall not exceed 0.904 g/g of air. This test criterion also satisfies the water injection requirements for NOX abatement and inlet performance enhancing devices. The results show that for ±1 °C error in the sensor measurement, the resulting error in NOX calculation is less than 0.2 ppm. The test results show that all sensors except the current one in use have met the test criterion. The current sensor, General Eastern DT-2, has a large measurement error in the order of ±5 °C. Programs have been launched to field test and evaluate these sensors in order to replace the current one.


Author(s):  
Yasushi Muto ◽  
Shintaro Ishiyama ◽  
Shusaku Shiozawa ◽  
Masanori Tanihira ◽  
Yasuyuki Miyoshi ◽  
...  

This paper describes the conceptual design and cost estimation of a 600MW(t) HTGR-GT power plant, which has been completed in the framework of the HTGR-GT feasibility study project in the duration of FY 1996 to FY 2000. The project is assigned to JAERI by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) (former Science and Technology Agency) in Japan. The inlet and outlet gas temperatures in the reactor are 460°C and 850°C, respectively. Helium gas pressure is 6MPa. The gas turbine system type is an intercooled recuperative direct cycle. Designs of reactor and gas turbine are presented. The main feature of the plant is a relatively large 600 MW(t) HTGR, horizontal single shaft helium turbine and divided power conversion vessel, that is, a turbomachine vessel and heat exchanger one. Their main specifications and drawings are presented. As a result of cost estimation, an economically attractive construction cost and a power generation cost have been obtained.


Author(s):  
Neil Goldstein ◽  
Carlos A. Arana ◽  
Fritz Bien ◽  
Jamine Lee ◽  
John Gruninger ◽  
...  

The feasibility of an innovative minimally intrusive sensor for monitoring the hot gas stream at the turbine inlet in high performance aircraft gas turbine engines was demonstrated. The sensor uses passive fiber-optical probes and a remote readout device to collect and analyze the spatially resolved spectral signature of the hot gas in the combustor/turbine flowpaths. Advanced information processing techniques are used to extract the average temperature, temperature pattern factor, and chemical composition on a sub-second time scale. Temperatures and flame composition were measured in a variety of combustion systems including a high pressure, high temperature combustion cell. Algorithms for real-time temperature measurements were developed and demonstrated. This approach should provide a real-time temperature profile, temperature pattern factor, and chemical species sensing capability for multi-point monitoring of high temperature and high pressure flow at the combustor exit with application as an engine development diagnostic tool, and ultimately, as a real-time active control component for high performance gas turbines.


Author(s):  
F. G. Elliott ◽  
R. Kurz ◽  
C. Etheridge ◽  
J. P. O’Connell

Industrial Gas Turbines allow operation with a wide variety of gaseous and liquid fuels. To determine the suitability for operation with a gas fuel system, various physical parameters of the proposed fuel need to be determined: Heating value, dew point, Joule-Thompson coefficient, Wobbe Index and others. This paper describes an approach to provide a consistent treatment for determining the above physical properties. Special focus is given to the problem of determining the dew point of the potential fuel gas at various pressure levels. A dew point calculation using appropriate equations of state is described, and results are presented. In particular the treatment of heavier hydrocarbons, and water is addressed and recommendations about the necessary data input are made. Since any fuel gas system causes pressure drops in the fuel gas, the temperature reduction due to the Joule-Thompson effect has to be considered and quantified. Suggestions about how to approach fuel suitability questions during the project development and construction phase, as well as in operation are made.


Sign in / Sign up

Export Citation Format

Share Document