Applicability and Limitations of Simplified Elastic Shell Equations for Carbon Nanotubes

2004 ◽  
Vol 71 (5) ◽  
pp. 622-631 ◽  
Author(s):  
C. Y. Wang ◽  
C. Q. Ru ◽  
A. Mioduchowski

This paper examines applicability and limitations of simplified models of elastic cylindrical shells for carbon nanotubes. The simplified models examined here include Donnell equations and simplified Flugge equations characterized by an uncoupled single equation for radial deflection. These simplified elastic shell equations are used to study static buckling and free vibration of carbon nanotubes, with detailed comparison to exact Flugge equations of cylindrical shells. It is shown that all three elastic shell models are in excellent agreement (with relative errors less than 5%) with recent molecular dynamics simulations for radial breathing vibration modes of carbon nanotubes, while reasonable agreements for various buckling problems have been reported previously for Donnell equations. For general cases of buckling and vibration, the results show that the simplified Flugge model, which retains mathematical simplicity of Donnell model, is consistently in better agreement with exact Flugge equations than Donnell model, and has a significantly enlarged range of applicability for carbon nanotubes. In particular, the simplified Flugge model is applicable for carbon nanotubes (with relative errors around 10% or less) in almost all cases of physical interest, including some important cases in which Donnell model results in much larger errors. These results are significant for further application of elastic shell models to carbon nanotubes because simplified shell models, characterized by a single uncoupled equation for radial deflection, are particularly useful for multiwall carbon nanotubes of large number of layers.

2021 ◽  
Vol 7 (3) ◽  
pp. 61
Author(s):  
Matteo Strozzi ◽  
Oleg V. Gendelman ◽  
Isaac E. Elishakoff ◽  
Francesco Pellicano

The applicability and limitations of simplified models of thin elastic circular cylindrical shells for linear vibrations of double-walled carbon nanotubes (DWCNTs) are considered. The simplified models, which are based on the assumptions of membrane and moment approximate thin-shell theories, are compared with the extended Sanders–Koiter shell theory. Actual discrete DWCNTs are modelled by means of couples of concentric equivalent continuous thin, circular cylindrical shells. Van der Waals interaction forces between the layers are taken into account by adopting He’s model. Simply supported and free–free boundary conditions are applied. The Rayleigh–Ritz method is considered to obtain approximate natural frequencies and mode shapes. Different aspect and thickness ratios, and numbers of waves along longitudinal and circumferential directions, are analysed. In the cases of axisymmetric and beam-like modes, it is proven that membrane shell theory, differently from moment shell theory, provides results with excellent agreement with the extended Sanders–Koiter shell theory. On the other hand, in the case of shell-like modes, it is found that both membrane and moment shell theories provide results reporting acceptable agreement with the extended Sanders–Koiter shell theory only for very limited ranges of geometries and wavenumbers. Conversely, for shell-like modes it is found that a newly developed, simplified shell model, based on the combination of membrane and semi-moment theories, provides results in satisfactory agreement with the extended Sanders–Koiter shell theory in all ranges.


2018 ◽  
Author(s):  
Gen Hayase

By exploiting the dispersibility and rigidity of boehmite nanofibers (BNFs) with a high aspect ratio of 4 nm in diameter and several micrometers in length, multiwall-carbon nanotubes (MWCNTs) were successfully dispersed in aqueous solutions. In these sols, the MWCNTs were dispersed at a ratio of about 5–8% relative to BNFs. Self-standing BNF–nanotube films were also obtained by filtering these dispersions and showing their functionality. These films can be expected to be applied to sensing materials.


2016 ◽  
Vol 25 (4) ◽  
pp. 459-464 ◽  
Author(s):  
M.I. Abduo ◽  
A.S. Dahab ◽  
Hesham Abuseda ◽  
Abdulaziz M. AbdulAziz ◽  
M.S. Elhossieny

Sign in / Sign up

Export Citation Format

Share Document