current transfer
Recently Published Documents


TOTAL DOCUMENTS

266
(FIVE YEARS 44)

H-INDEX

22
(FIVE YEARS 3)

Author(s):  
Yuriy Yu. Bacherikov ◽  
Petro M. Lytvyn ◽  
Sergii V. Mamykin ◽  
Olga B. Okhrimenko ◽  
Valentyna V. Ponomarenko ◽  
...  

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 650
Author(s):  
Lenka Kunčická ◽  
Radim Kocich ◽  
Petr Kačor ◽  
Michal Jambor ◽  
Miroslav Jopek

The nature of alternating current transfer via metallic materials is specific, since the current density tends to be inhomogeneous across the cross-section of the conductor and the skin effect tends to occur. However, the influence of this effect on the behaviour of the conductor can be optimized via the design and fabrication procedures. The study presents innovative design of an Al–Cu clad conductor, which is supposed to affect favourably the influence of the skin effect. The clad conductors of various diameters (20 mm, 15 mm, and 10 mm) were fabricated via rotary swaging at room temperature, and their electric characteristics were subsequently examined both experimentally and via numerical simulations. Structure analyses performed to document the effects of the swaging technology on the development of substructure and characteristic structural features were carried out by scanning electron microscopy (electron backscatter diffraction analyses), and transmission electron microscopy. The results showed that the design of the composite has a favourable effect on decreasing the power losses during alternating current transfer and that the substructure development affected favourably the electric resistance of the conductor. The highest electric resistance was measured for the composite conductor with the diameter of 20 mm (1.8% increase compared to electric resistance during transfer of direct current). This value then decreased to 0.6%, and 0.1% after swaging down to the diameters of 15 mm, and 10 mm; the 10 mm composite featured the finest grains, partially restored structure, and texture randomization compared to the 20 mm and 15 mm composites. Manufacturing of the clad composite via rotary swaging imparted advantageous combinations of both the electric and mechanical properties, as swaging also introduced increased microhardness.


2021 ◽  
Vol 173 ◽  
pp. 112861
Author(s):  
Wei Pi ◽  
Yuantong Ma ◽  
Binyi Tian ◽  
Yiran Meng ◽  
Qingmei Shi ◽  
...  

2021 ◽  
Vol 23 (5) ◽  
pp. 231-237
Author(s):  
O.E. Glukhova ◽  
◽  
M.M. Slepchenkov ◽  
P.V. Barkov ◽  
◽  
...  

This paper studies graphene nanomesh with different neck width is the smallest distance between two neighboring holes. The electrical properties of graphene nanomesh with circular holes were calculated in dependence on its neck width. For the considered structures energetical characteristics including energy gap (Egap), Fermi level (Ef), and density of electron states (DOS) were found. It was established that graphene nanomesh demonstrated both metallic and semiconductor types of conductivity when the neck width was increased along the zigzag direction. In the case of increasing the neck width along armchair direction, graphene nanomesh demonstrated only a metallic type of conductivity. It was observed the anisotropy of electrical conductivity depending on the direction along which the current transfer was carried out.


2021 ◽  
Vol 2056 (1) ◽  
pp. 012051
Author(s):  
N A Vetrova ◽  
A A Filyaev ◽  
V D Shashurin ◽  
L A Luneva

Abstract Predictor of the reliability indicators of resonant tunneling diodes with a generalization of the methodology for nanoelectronic heterostructure devices with quantum confinement and transverse current transfer has been developed. The advantage of the developed software is the possibility of interactive input of additional experimental information for further calculation of point and interval estimates of the reliability indicators of semiconductor devices using Bayesian inversion, which allows predicting these indicators under conditions of limited experimental information.


2021 ◽  
Vol 5 (3) ◽  
pp. 48
Author(s):  
Michael M. Slepchenkov ◽  
Alexander А. Petrunin ◽  
Olga E. Glukhova

We investigate electronic and electro-physical properties of mono- and bilayer armchair single-walled carbon nanotube (SWCNT) films located on substrates of different types, including substrates in the form of crystalline silicon dioxide (SiO2) films with P42/mnm and P3121 space symmetry groups. The SWCNT films interact with substrate only by van der Waals forces. The densities of electronic states (DOS) and the electron transmission functions are calculated for SWCNT films with various substrates. The electrical conductivity of SWCNT films is calculated based on the electron transmission function. It is found that the substrate plays an important role in the formation of DOS of the SWCNT films, and the surface topology determines the degree and nature of the mutual influence of the nanotube and the substrate. It is shown that the substrate affects the electronic properties of monolayer films, changing the electrical resistance value from 2% to 17%. However, the substrate has practically no effect on the electrical conductivity and resistance of the bilayer film in both directions of current transfer. In this case, the values of the resistances of the bilayer film in both directions of current transfer approach the value of ~6.4 kΩ, which is the lowest for individual SWCNT.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1074
Author(s):  
Pavel V. Barkov ◽  
Olga E. Glukhova

This paper studies holey graphene with various neck widths (the smallest distance between two neighbor holes). For the considered structures, the energy gap, the Fermi level, the density of electronic states, and the distribution of the local density of electronic states (LDOS) were found. The electroconductive properties of holey graphene with round holes were calculated depending on the neck width. It was found that, depending on the neck width, holey graphene demonstrated a semiconductor type of conductivity with an energy gap varying in the range of 0.01–0.37 eV. It was also shown that by changing the neck width, it is possible to control the electrical conductivity of holey graphene. The anisotropy of holey graphene electrical conductivity was observed depending on the direction of the current transfer.


Sign in / Sign up

Export Citation Format

Share Document