Modeling of Ultra-Precision ELID Grinding

2006 ◽  
Vol 129 (2) ◽  
pp. 296-302 ◽  
Author(s):  
K. Fathima ◽  
M. Rahman ◽  
A. Senthil Kumar ◽  
H. S. Lim

The electrolytic in-process dressing (ELID) grinding is a new and an efficient process for ultra-precision finishing of hard and brittle materials. Unlike conventional grinding processes, the ELID grinding is a hybrid process that consists of a mechanical and an electrochemical process, and the performance of the ELID grinding process is influenced by the parameters of the above said processes. Therefore, it is necessary to develop a new grinding model for the ELID grinding, which can be used to avoid the cumbersome and expensive experimental trials. In this paper, the authors proposed a new grinding model for ultra-precision ELID grinding. The main focus is to develop a force model for the ultra-precision ELID grinding where the material removal is significantly lower than the conventional grinding. When the material removal rate is very low, it is very important to estimate the real contact area between the wheel and work surfaces. The developed grinding model estimates the real contact area by considering the wheel and the work surface characterization and the effect of the electrolytic reaction at the grinding wheel edge. The effects of the microstructure changes on the wheel surface by the electrochemical reaction have been implemented in the model in order to improve the efficiency of the developed model. The grinding model has been simulated and the simulated results are substantiated by the experimental findings.

2006 ◽  
Vol 914 ◽  
Author(s):  
Carolina L. Elmufdi ◽  
Gregory P. Muldowney

AbstractReal contact area between a CMP pad and wafer is a key factor in local contact pressure, friction and pad wear, all of which impact material removal and defect formation. A new optical method is introduced that quantifies the real contact area during polishing. Confocal reflectance interference contrast microscopy (C-RICM) uses a single focal plane to image the pad-wafer contact interface. A sapphire cover slip is used to provide optical transparency and to match the refractive index of the pad. Imaging the pad surface through the cover slip reveals areas of no reflection (pad-cover slip contact), areas of reflection (non-contact), and interference fringes (near contact). The C-RICM method was validated using micro-fabricated pads having uniform arrays of cylindrical surface structures of known contact area. Experiments conducted on porous polyurethane pads revealed that the real contact area is less than 10% of the total presented area. However Greenwood-Williamson (G-W) theory, widely used in CMP material removal models, predicts a contact area at least a factor of ten smaller. The discrepancy was found to result at least in part because the individual contact zones are not elliptical as assumed in G-W theory. In fact many contacting structures are crescents located at the perimeter of individual pores. These findings underscore the need for accurate control of pore density and morphology in polishing pads, in both initial manufacture and surface conditioning during CMP. The C-RICM method allows non-destructive benchmarking of polishing media in terms of pad-wafer contact, essential for developing improved pad architectures that achieve lower CMP defect levels.


Friction ◽  
2020 ◽  
Author(s):  
Rongxin Chen ◽  
Jiaxin Ye ◽  
Wei Zhang ◽  
Jiang Wei ◽  
Yan Zhang ◽  
...  

Abstract The tribological characteristics of cotton fibers play an important role in engineering and materials science, and real contact behavior is a significant aspect in the friction behavior of cotton fibers. In this study, the tribological characteristics of cotton fibers and their relationship with the real contact behavior are investigated through reciprocating linear tribotesting and real contact analysis. Results show that the friction coefficient decreases with a general increase in load or velocity, and the load and velocity exhibit a co-influence on the friction coefficient. The dynamic change in the real contact area is recorded clearly during the experiments and corresponds to the fluctuations observed in the friction coefficient. Moreover, the friction coefficient is positively correlated with the real contact area based on a quantitative analysis of the evolution of friction behavior and the real contact area at different loads and velocities. This correlation is evident at low velocities and medium load.


2018 ◽  
Vol 282 ◽  
pp. 73-76 ◽  
Author(s):  
Toshiyuki Sanada ◽  
Masanao Hanai ◽  
Akira Fukunaga ◽  
Hirokuni Hiyama

In the post CMP cleaning, the contact condition between PVA brush and surface is very important. In this study, we observed the real contact area between a brush and surface using a collimating LED light and prism. As a result, we found that the real contact area increases with increasing the brush compression. In addition, we also found that the real contact area decreases when the brush starts to move, and the brush was locally compressed due to its deformation.


Exacta ◽  
2009 ◽  
Vol 6 (2) ◽  
pp. 197-208
Author(s):  
Alex Alves Bandeira ◽  
Rita Moura Fortes ◽  
João Virgílio Merighi

The basic aim in this work is to present a new technique to analyze the contact surfaces developed by the contact between the tires and the structural pavements by numerical simulations, using 3D finite element formulations with contact mechanics. For this purpose, the Augmented Lagrangian method is used. This study is performed just putting the tires on the structural pavement. These tires and the structural pavement are discretized by finite elements under large 3D elastoplastic deformation. The real loads (of aircrafts, trucks or cars) are applied directly on each tire and by contact mechanics procedures, the real contact area between the tires and the pavement surface is computed. The penetration conditions and the contact interfaces are investigated in details. Furthermore, the pressure developed at the contact surfaces is automatically calculated and transferred to the structural pavement by contact mechanics techniques. The purpose of this work research is to show that the contact area is not circular and the finite element techniques can calculate automatically the real contact area, the real geometry and its stresses and strains. In the end of this work, numerical results in terms of geometry, stress and strain are presented and compared to show the ability of the algorithm. These numerical results are also compared with the numerical results obtained by the commercial program ANSYS.


2020 ◽  
Vol 143 (7) ◽  
Author(s):  
Lei-Tao Li ◽  
Xuan-Ming Liang ◽  
Yu-Zhe Xing ◽  
Duo Yan ◽  
Gang-Feng Wang

Abstract The measurement of the real contact area between rough surfaces is one of the most challenging problems in contact mechanics and is of importance to understand some physical mechanisms in tribology. Based on the frustrated total internal reflection, a new apparatus is designed to measure the real contact area. For metallic samples with various surface topographies, the relation between normal load and the real contact area is measured. The unloading process is first considered to distinguish the contribution of elasticity and plasticity in contact with rough surfaces. It is found that both elasticity and plasticity are involved throughout the continuous loading process, different from some present understanding and assumptions that they play at different loading stages. A quantitative parameter is proposed to indicate the contribution of plasticity. The present work not only provides an experimental method to measure the real contact area but figures out how elastic and plastic deformation works in contact with rough surfaces.


Sign in / Sign up

Export Citation Format

Share Document