Corrosion Study on Different Types of Metallic Bipolar Plates for Polymer Electrolyte Membrane Fuel Cells

2006 ◽  
Vol 4 (2) ◽  
pp. 116-122 ◽  
Author(s):  
R. F. Silva ◽  
A. Pozio

Three different types of metallic bipolar plates (commercial stainless steels, Ni-based alloys, and nitride-coated steels) were investigated in terms of their interface contact resistance (ICR) and corrosion resistance in conditions typical of a proton exchange membrane fuel cell environment. The results showed that stainless steels are unsuitable because of the formation of nonconductive oxide that leads to high ICR. Ni-based alloys showed to be prone to corrosion in acidic medium, although they have an ICR comparable to commercially available graphite. Endurance tests carried out on nitride-coated stainless-steel specimens showed a low ICR and very good corrosion resistance of this material.

2019 ◽  
Vol 9 (12) ◽  
pp. 2568 ◽  
Author(s):  
Kun Shi ◽  
Xue Li ◽  
Yang Zhao ◽  
Wei-Wei Li ◽  
Shu-Bo Wang ◽  
...  

To improve corrosion resistance and electronic conductivity of bipolar plates for proton exchange membrane fuel cell (PEMFC), coatings of TiNb and TiNbN on 316L stainless steel (SS) were prepared by magnetron sputtering. X-ray diffraction (XRD) measurements confirmed the existence of metallic nitrides in the TiNbN coating. Scanning electron microscope (SEM) tests showed that the deposited coatings provided smooth surfaces. Further electrochemical measurements indicated that the corrosion resistance of TiNb coating was significantly higher than that of substrate. At 0.19 V vs MSE, the long-term stabilized current density of TiNb/316L SS was lower than 1 μA·cm−2. The interfacial contact resistance (ICR) values between coating and carbon paper suggested that TiNb and TiNbN films had better contact conductivity than 316L SS substrate. In conclusion, TiNb coated 316L SS metallic bipolar plate material is a promising option for PEMFC.


1999 ◽  
Vol 575 ◽  
Author(s):  
T. Jan Hwang ◽  
Hong Shao ◽  
Neville Richards ◽  
Jerome Schmitt ◽  
Andrew Hunt ◽  
...  

ABSTRACTThe objective of this research is to develop the combustion chemical vapor deposition (CCVD) process for low-cost manufacture of catalytic coatings for proton exchange membrane fuel cell (PEMFC) applications. The platinum coatings as well as the fabrication process for membrane-electrode-assemblies (MEAs) were evaluated in a single testing fuel cell using hydrogen/oxygen. It was found that increasing the platinum loading from 0.05 to 0.1 mg/cm2 did not increase the fuel cell performance. The in-house MEA fabrication process needs to be improved to reduce the cell resistance. Significantly higher performance of Pt coating by the CCVD process has been obtained by MCT's fuelcell industry collaborators who are more experienced with MEA fabrication. The results can not be revealed due to confidentiality agreements.


2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Shahram Karimi ◽  
Norman Fraser ◽  
Bronwyn Roberts ◽  
Frank R. Foulkes

The proton exchange membrane fuel cell offers an exceptional potential for a clean, efficient, and reliable power source. The bipolar plate is a key component in this device, as it connects each cell electrically, supplies reactant gases to both anode and cathode, and removes reaction products from the cell. Bipolar plates have been fabricated primarily from high-density graphite, but in recent years, much attention has been paid to developing cost-effective and feasible alternative materials. Two different classes of materials have attracted attention: metals and composites. This paper offers a comprehensive review of the current research being carried out on metallic bipolar plates, covering materials and fabrication methods.


Sign in / Sign up

Export Citation Format

Share Document