Static Friction Experiments and Verification of an Improved Elastic-Plastic Model Including Roughness Effects

2007 ◽  
Vol 129 (4) ◽  
pp. 754-760 ◽  
Author(s):  
Chul-Hee Lee ◽  
Andreas A. Polycarpou

An experimental study was conducted to measure the static friction coefficient under constant normal load and different interface conditions. These include surface roughness, dwell time, displacement rate, as well as the presence of traces of lubricant and wear debris at the interface. The static friction apparatus includes accurate measurement of friction, normal and lateral forces at the interface (using a high dynamic bandwidth piezoelectric force transducer), as well as precise motion control and measurement of the sliding mass. The experimental results show that dry surfaces are more dependent on the displacement rate prior to sliding inception compared to boundary lubricated surfaces in terms of static friction coefficient. Also, the presence of wear debris, boundary lubrication, and rougher surfaces decrease the static friction coefficient significantly compared to dry smooth surfaces. The experimental measurements under dry unlubricated conditions were subsequently compared to an improved elastic-plastic static friction model, and it was found that the model captures the experimental measurements of dry surfaces well in terms of the surface roughness.

Author(s):  
Chul-Hee Lee ◽  
Andreas A. Polycarpou

An experimental study was performed to measure the static friction coefficient under different experimental conditions. These include different surface roughness conditions, the effect of dwell time, the effect of acceleration (sliding velocity) as well as the presence of traces of lubricant and wear debris at the interface. The static friction tester provides accurate measurement of friction, normal and lateral forces at the interface (using a high dynamic bandwidth piezoelectric force transducer) as well as precise motion control and measurement of the interface motion. The experimental measurements were subsequently compared with an improved elastic-plastic rough surface static friction model, and it was found that the model captures the experimental measurements well, especially in terms of surface roughness. However, the data also shows the limitations of the model as it fails to accurately capture the effects of experimental conditions such as the presence of wear debris and start up velocity.


Author(s):  
Chul-Hee Lee ◽  
Andreas A. Polycarpou

The asymmetric height distribution in surface roughness is usually indispensable in engineering surfaces prepared by specific manufacturing process. Moreover, the running-in process develops severe asymmetric roughness distribution in the surface interfaces. In this paper, the effect of asymmetric asperity distribution on static friction coefficient is investigated theoretically and by comparing it with experimental results. In order to generate a probability density function of non-Gaussian surface roughness, the Pearson system of frequency curves was used. Subsequently, the Kogut and Etsion (KE) model of elastic-plastic static friction was modified to calculate the contacting interfacial forces. For the experiments, actual roller and housing surfaces from a CV (Constant Velocity) joint were prepared to measure the static friction coefficient as it clearly shows the asymmetry of roughness distribution due to the manufacturing and also running-in process. The experimental measurements were subsequently compared with the modified KE static friction model with Gaussian as well as Pearson distributions of asperity heights. It was found that the model with Pearson distribution captures the experimental measurements well in terms of the surface conditions.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wujiu Pan ◽  
Xiaopeng Li ◽  
Xue Wang

Purpose The purpose of this paper is to provide a static friction coefficient prediction model of rough contact surfaces based on the contact mechanics analysis of elastic-plastic fractal surfaces. Design/methodology/approach In this paper, the continuous deformation stage of the multi-scale asperity is considered, i.e. asperities on joint surfaces go through three deformation stages in succession, the elastic deformation, the elastic-plastic deformation (the first elastic-plastic region and the second elastic-plastic region) and the plastic deformation, rather than the direct transition from the elastic deformation to the plastic deformation. In addition, the contact between rough metal surfaces should be the contact of three-dimensional topography, which corresponds to the fractal dimension D (2 < D < 3), not two-dimensional curves. So, in consideration of the elastic-plastic deformation mechanism of asperities and the three-dimensional topography, the contact mechanics of the elastic-plastic fractal surface is analyzed, and the static friction coefficient nonlinear prediction model of the surface is further established. Findings There is a boundary value between the normal load and the fractal dimension. In the range smaller than the boundary value, the normal load decreases with fractal dimension; in the range larger than the boundary value, the normal load increases with fractal dimension. Considering the elastic-plastic deformation of the asperity on the contact surface, the total normal contact load is larger than that of ignoring the elastic-plastic deformation of the asperity. There is a proper fractal dimension, which can make the static friction of the contact surface maximum; there is a negative correlation between the static friction coefficient and the fractal scale coefficient. Originality/value In the mechanical structure, the research and prediction of the static friction coefficient characteristics of the interface will lay a foundation for the understanding of the mechanism of friction and wear and the interaction relationship between contact surfaces from the micro asperity-scale level, which has an important engineering application value.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
D. Cohen ◽  
Y. Kligerman ◽  
I. Etsion

A model for elastic-plastic nominally flat contacting rough surfaces under combined normal and tangential loading with full stick contact condition is presented. The model incorporates an accurate finite element analysis for contact and sliding inception of a single elastic-plastic asperity in a statistical representation of surface roughness. It includes the effect of junction growth and treats the sliding inception as a failure mechanism, which is characterized by loss of tangential stiffness. A comparison between the present model and a previously published friction model shows that the latter severely underestimates the maximum friction force by up to three orders of magnitude. Strong effects of the normal load, nominal contact area, mechanical properties, and surface roughness on the static friction coefficient are found, in breach of the classical laws of friction. Empirical equations for the maximum friction force, static friction coefficient, real contact area due to the normal load alone and at sliding inception as functions of the normal load, material properties, and surface roughness are presented and compared with some limited available experimental results.


1998 ◽  
Vol 120 (2) ◽  
pp. 296-303 ◽  
Author(s):  
A. A. Polycarpou ◽  
Izhak Etsion

A model for calculating the static friction coefficient of contacting real (rough) surfaces in the presence of very thin liquid films (sub-boundary lubrication) is developed. The liquid has a very high affinity for the surfaces and its thickness is of the order of the surface roughness average. An extension of the Greenwood and Williamson (GW) asperity model and an improved Derjaguin, Muller and Toporov (DMT) adhesion model are utilized for calculating the contact and adhesion forces, respectively. The effects of the liquid film thickness and the surface topography on the static friction coefficient are investigated. A critical film thickness is found above which the friction coefficient increases sharply. The critical thickness depends on the surface roughness and the external normal load. This phenomenon is more profound for very smooth surfaces and small normal loads, in agreement with published experimental work on magnetic hard disk interfaces.


2011 ◽  
Vol 301-303 ◽  
pp. 1109-1114
Author(s):  
Qian Qian Wang ◽  
Geng Chen Shi ◽  
Xin Xiong

Micro electro mechanical system (MEMS) has been increasingly used in military application. For the reliability and specialty of military requirements, the material of the MEMS device is supposed to be metal and the device is moveable. Lithographic, Galvanoforming, Abformung (LIGA) technology capable of producing high aspect ratio structures in metals like nickel is one of the important fabrication technologies in military MEMS. There are many moveable MEMS device like micro-gear and micro-slider producing by LIGA technology. But the moveable devices cannot behave well because of the friction effect. In this paper, an improved elastic-plastic model including roughness effects and an experimental procedure that predict the static friction prosperity of LIGA-processed nickel is proposed. Firstly, we use the 3D optical profilometer to research the surface roughness of LIGA-processed nickel, the surface heights distribution was found to be nearly Gaussian distribution. Secondly, the static friction model, the Kogut-Etsion (KE) model is adopted to obtain the static friction coefficient. Finally, a special designed static friction coefficient measurement apparatus is used to conduct the friction experiments. The results indicate that the surface roughness affects the friction and the smoother surface leads to a higher friction coefficient. Also good agreement was found between simulations and experimental results.


2016 ◽  
Vol 08 (08) ◽  
pp. 1650090 ◽  
Author(s):  
Abdeljalil Jourani

Few models are devoted to explain the effect of surface roughness on the friction coefficient. Most of them use statistical approaches and do not incorporate the transition from elastic deformation to fully plastic flow. In this paper, a three-dimensional (3D) deterministic model is developed by considering different deformation modes of surface roughness which range from fully elastic through elastic–plastic to fully plastic contact interface. The simulations show that the increase in the surface roughness and mesh resolution lead to the increase in the static friction coefficient. For surfaces which present a low roughness, the static friction coefficient increases with increase in the normal load. The transition from elastic to plastic deformation is responsible for the increase of the friction coefficient with normal load. The comparison between experimental and numerical results reveals that the experimental friction coefficient is slightly larger than the calculated one. This difference does not exceed 10%. The multiscale roughness and the simplified geometry used to describe the shape of the surface roughness can explain the gap between experimental and numerical results in terms of friction coefficient.


Author(s):  
Andrey Ovcharenko ◽  
Gregory Halperin ◽  
Izhak Etsion

The elastic-plastic contact between a deformable sphere and a rigid flat during pre-sliding is studied experimentally. Measurements of friction force and contact area are done in real time along with an accurate identification of the instant of sliding inception. The static friction force and relative tangential displacement are investigated over a wide range of normal preloads for several sphere materials and diameters. It is found that at low normal loads the static friction coefficient depends on the normal load in breach of the classical laws of friction. The pre-sliding displacement is found to be less than 5 percent of the contact diameter, and the interface mean shear stress at sliding inception is found to be slightly below the shear strength of the sphere material. Good correlation is found between the present experimental results and a recent theoretical model in the elastic-plastic regime of deformation.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
A. Ovcharenko ◽  
G. Halperin ◽  
I. Etsion

The elastic-plastic contact between a deformable sphere and a rigid flat during presliding is studied experimentally. Measurements of friction force and contact area are done in real time along with an accurate identification of the instant of sliding inception. The static friction force and relative tangential displacement are investigated over a wide range of normal preloads for several sphere materials and diameters. Different behavior of the static friction is observed in the elastic and in the elastic-plastic regimes of sphere deformation. It is found that at low normal loads, the static friction coefficient depends on the normal load in breach of the classical laws of friction. The presliding displacement is found to be less than 5% of the contact diameter, and the interface mean shear stress at sliding inception is found to be slightly below the shear strength of the sphere material. Good correlation is found between the present experimental results and a recent theoretical model in the elastic-plastic regime of deformation.


Author(s):  
Andrey Ovcharenko ◽  
Gregory Halperin ◽  
Izhak Etsion

The elastic-plastic contact between a deformable sphere and a rigid flat during pre-sliding is studied experimentally. Measurements of friction force and contact area are done in real time along with an accurate identification of the instant of sliding inception. The static friction force and relative tangential displacement are investigated over a wide range of normal preloads for several sphere materials and diameters. It is found that at low normal loads the static friction coefficient depends on the normal load in breach of the classical laws of friction. The pre-sliding displacement is found to be less than 5 percent of the contact diameter, and the interface mean shear stress at sliding inception is found to be slightly below the shear strength of the sphere material. Good correlation is found between the present experimental results and a recent theoretical model in the elastic-plastic regime of deformation.


Sign in / Sign up

Export Citation Format

Share Document