Thermomechanical Durability Analysis of Flip Chip Solder Interconnects: Part 2—With Underfill

1999 ◽  
Vol 121 (4) ◽  
pp. 237-241 ◽  
Author(s):  
K. Darbha ◽  
J. H. Okura ◽  
S. Shetty ◽  
A. Dasgupta ◽  
T. Reinikainen ◽  
...  

The effect of underfill material on reliability of flip chip on board (FCOB) assemblies is investigated in this study by using two-dimensional and three-dimensional finite element simulations under thermal cycling stresses from −55°C to 80°C. Accelerated testing of FCOB conducted by the authors reveals that the presence of underfill can increase the fatigue durability of solder interconnects by two orders of magnitude. Similar data has been extensively reported in the literature. It is the intent of this paper to develop a generic and fundamental predictive model that explains this trend. While empirical models have been reported by other investigators based on experimental data, the main drawback is that many of these empirical models are not truly predictive, and can not be applied to different flip chip architectures using different underfills. In the proposed model, the energy-partitioning (EP) damage model is enhanced in order to capture the underlying mechanisms so that a predictive capability can be developed. A two-dimensional finite element model is developed for stress analysis. This model accounts for underfill over regions of solder in an approximate manner by using overlay elements, and is calibrated using a three-dimensional finite element model. The model constant for the enhanced EP model is derived by fitting model predictions (combination of two-dimensional and three-dimensional model results) to experimental results for a given temperature history. The accuracy of the enhanced EP model is then verified for a different loading profile. The modeling not only reveals the influence of underfill material on solder joint durability, but also provides the acceleration factor to assess durability under life cycle environment, from accelerated test results. Experimental results are used to validate the trends predicted by the analytical model. The final goal is to define the optimum design and process parameters of the underfill material in FCOB assemblies in order to extend the fatigue endurance of the solder joints under cyclic thermal loading environments.

Geosciences ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 76
Author(s):  
Ashraf Hefny ◽  
Mohamed Ezzat Al-Atroush ◽  
Mai Abualkhair ◽  
Mariam Juma Alnuaimi

The complexities and the economic computational infeasibility associated in some cases, with three-dimensional finite element models, has imposed a motive for many investigators to accept numerical modeling simplification solutions such as assuming two-dimensional (2D) plane strain conditions in simulation of several supported-deep excavation problems, especially for cases with a relatively high aspect ratio in plan dimensions. In this research, a two-dimensional finite element model was established to simulate the behavior of the supporting system of a large-scale deep excavation utilized in the construction of an underground metro station Rod El Farrag project (Egypt). The essential geotechnical engineering properties of soil layers were calculated using results of in-situ and laboratory tests and empirical correlations with SPT-N values. On the other hand, a three-dimensional finite element model was established with the same parameters adopted in the two-dimensional model. Sufficient sensitivity numerical analyses were performed to make the three-dimensional finite element model economically feasible. Results of the two-dimensional model were compared with those obtained from the field measurements and the three-dimensional numerical model. The comparison results showed that 3D high stiffening at the primary walls’ corners and also at the locations of cross walls has a significant effect on both the lateral wall deformations and the neighboring soil vertical settlement.


2003 ◽  
Vol 125 (4) ◽  
pp. 787-793 ◽  
Author(s):  
Jong-Gye Shin ◽  
Yang-Ryul Choi ◽  
Hyunjune Yim

The mechanics of die-less asymmetric rolling has been investigated in depth, for the first time, using a two-dimensional analytical model and a three-dimensional finite element model. In doing so, the physical understanding of mechanics underlying die-less asymmetric rolling has greatly been enhanced. Moreover, the asymmetry in roller radii was found to be the most effective parameter for curvature control, in the considered ranges of various parameters.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


2013 ◽  
Vol 336-338 ◽  
pp. 760-763
Author(s):  
Hui Yue

A short explanation of the finite element method as a powerful tool for mathematical modeling is provided, and an application using constitutive modeling of the behavior of ligaments is introduced. Few possible explanations of the role of water in ligament function are extracted from two dimensional finite element models of a classical ligament. The modeling is extended to a three dimensional finite element model for the human anterior cruciate ligament. Simulation of ligament force in pitching motion of basketball player is studied in this paper.


Sign in / Sign up

Export Citation Format

Share Document