Using Tolerance-Maps to Generate Frequency Distributions of Clearance and Allocate Tolerances for Pin-Hole Assemblies

2007 ◽  
Vol 7 (4) ◽  
pp. 347-359 ◽  
Author(s):  
Gaurav Ameta ◽  
Joseph K. Davidson ◽  
Jami J. Shah

A new mathematical model for representing the geometric variations of lines is extended to include probabilistic representations of one-dimensional (1D) clearance, which arise from positional variations of the axis of a hole, the size of the hole, and a pin-hole assembly. The model is compatible with the ASME/ ANSI/ISO Standards for geometric tolerances. Central to the new model is a Tolerance-Map (T-Map) (Patent No. 69638242), a hypothetical volume of points that models the 3D variations in location and orientation for a segment of a line (the axis), which can arise from tolerances on size, position, orientation, and form. Here, it is extended to model the increases in yield that occur when maximum material condition (MMC) is specified and when tolerances are assigned statistically rather than on a worst-case basis; the statistical method includes the specification of both size and position tolerances on a feature. The frequency distribution of 1D clearance is decomposed into manufacturing bias, i.e., toward certain regions of a Tolerance-Map, and into a geometric bias that can be computed from the geometry of multidimensional T-Maps. Although the probabilistic representation in this paper is built from geometric bias, and it is presumed that manufacturing bias is uniform, the method is robust enough to include manufacturing bias in the future. Geometric bias alone shows a greater likelihood of small clearances than large clearances between an assembled pin and hole. A comparison is made between the effects of choosing the optional material condition MMC and not choosing it with the tolerances that determine the allowable variations in position.

Author(s):  
Gaurav Ameta ◽  
Joseph K. Davidson ◽  
Jami J. Shah

A new mathematical model for representing the geometric variations of tabs/slots is extended to include probabilistic representations of 1-D clearance which can be determined from multi-dimensional variations of the medial plane for a slot or a tab, and from variations of both medial planes in a tab-slot assembly. The model is compatible with the ASME/ANSI/ISO Standards for geometric tolerances. Central to the new model is a Tolerance-Map (T-Map), a hypothetical volume of points that models the range of 3-D variations in location and orientation for a segment of a plane (the medial plane), which can arise from tolerances on size, position, orientation, and form. Here it is extended to model the increases in yield that occur when the optional maximum material condition (MMC) is specified and when tolerances are assigned statistically rather than on a worst-case basis. The frequency distribution of 1-D clearance is decomposed into manufacturing bias, i.e. toward certain regions of a Tolerance-Map, and into a geometric bias that can be computed from the geometry of multidimensional T-Maps. Although the probabilistic representation in this paper is built from geometric bias, and it is presumed that manufacturing bias is uniform, the method is robust enough to include manufacturing bias in the future. Geometric bias alone shows a greater likelihood of small clearances than large clearances between an assembled tab and slot. A comparison is made between the effects of choosing the optional MMC and not choosing it with the tolerance that determines the allowable variations in position of a slot.


Author(s):  
Gaurav Ameta ◽  
Joseph K. Davidson ◽  
Jami J. Shah

A new mathematical model for representing the geometric variations of lines is extended to include probabilistic representations of 1-D clearance which arise from multidimensional variations of an axis, a hole and a pin-hole assembly. The model is compatible with the ASME/ANSI/ISO Standards for geometric tolerances. Central to the new model is a Tolerance-Map (T-Map), a hypothetical volume of points that models the 3-D variations in location and orientation for a segment of a line (the axis), which can arise from tolerances on size, position, orientation, and form. Here it is extended to model the increase in yield that occurs when maximum material condition (MMC) is specified. The frequency distribution of 1-D clearance is decomposed into manufacturing bias, i.e. toward certain regions of a Tolerance-Map, and into a geometric bias that can be computed from the geometry of multidimensional T-Maps. Although the probabilistic representation in this paper is focused on geometric bias and manufacturing bias is presumed to be uniform, the method is robust enough to include manufacturing bias in the future. Geometric bias alone shows a greater likelihood of small clearances than large clearances between an assembled pin and hole.


Author(s):  
Gaurav Ameta ◽  
Joseph K. Davidson ◽  
Jami J. Shah

A new mathematical model for representing the geometric variations of tabs/slots is extended to include probabilistic representations of 1D clearance. The 1D clearance can be determined from multidimensional variations of the medial-plane for a slot or a tab, and from variations of both medial-planes in a tab-slot assembly. The model is compatible with the ASME/ANSI/ISO Standards for geometric tolerances. Central to the new model is a Tolerance-Map (Patent No. 6963824) (T-Map), a hypothetical volume of points that models the range of 3D variations in location and orientation for a segment of a plane (the medial-plane), which can arise from tolerances on size, position, orientation, and form. Here it is extended to model the increases in yield that occur when the optional maximum material condition (MMC) is specified and when tolerances are assigned statistically rather than on a worst-case basis. The frequency distribution of 1D clearance is decomposed into manufacturing bias, i.e., toward certain regions of a Tolerance-Map, and into a geometric bias that can be computed from the geometry of multidimensional T-Maps. Although the probabilistic representation in this paper is built from geometric bias, and it is presumed that manufacturing bias is uniform, the method is robust enough to include manufacturing bias in the future. Geometric bias alone shows a greater likelihood of small clearances than large clearances between an assembled tab and slot. A comparison is made between the effects of specifying the optional MMC and not specifying it with the tolerance that determines the allowable variations in position of a tab, a slot, or of both in a tab-slot assembly. Statistical tolerance assignment for the tab-slot assembly is computed based on initial worst-case tolerances and for (a) constant size of tab and slot at maximum material condition, and (b) constant virtual-condition size.


Author(s):  
Gaurav Ameta ◽  
Joseph K. Davidson ◽  
Jami J. Shah

A new mathematical model for representing the geometric variations of a planar surface is extended to include probabilistic representations for a 1D dimension of interest, which can be determined from multidimensional variations of the planar surface on a part. The model is compatible with the ASME/ANSI/ISO Standards for geometric tolerances. Central to the new model is a Tolerance-Map® (T-Map®) (Patent No. 6963824), a hypothetical volume of points that models the 3D variations in location and orientation of a feature, which can arise from tolerances on size, position, orientation, and form. The 3D variations of a planar surface are decomposed into manufacturing bias, i.e., toward certain regions of a Tolerance-Map, and into geometric bias that can be computed from the geometry of T-Maps. The geometric bias arises from the shape of the feature, the tolerance-zone, and the control used on the mating envelope. Influence of manufacturing bias on the frequency distribution of 1D dimension of interest is demonstrated with two examples: the multidimensional truncated Gaussian distribution and the uniform distribution. In this paper, form and orientation variations are incorporated as subsets in order to model the coupling between size and form variations, as permitted by the ASME Standard when the amounts of these variations differ. Two distributions for flatness, i.e., the uniform distribution and the Gaussian distribution that has been truncated symmetrically to six standard deviations, are used as examples to illustrate the influence of form on the dimension of interest. The influence of orientation (parallelism and perpendicularity) refinement on the frequency distribution for the dimension of interest is demonstrated. Although rectangular faces are utilized in this paper to illustrate the method, the same techniques may be applied to any convex plane-segment that serves as a target face.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Gagandeep Singh ◽  
Gaurav Ameta ◽  
Joseph K. Davidson ◽  
Jami J. Shah

A self-aligning coupling is used as a vehicle to show that the Tolerance-Map (T-Map) mathematical model for geometric tolerances can distinguish between related and unrelated actual mating envelopes as described in the ASME/ISO standards. The coupling example illustrates how T-Maps (Patent No. 6963824) may be used for tolerance assignment during design of assemblies that contain non-congruent features in contact. Both worst-case and statistical measures are obtained for the variation in alignment of the axes of the two engaged parts of the coupling in terms of the tolerances. The statistical study is limited to contributions from the geometry of toleranced features and their tolerance-zones. Although contributions from characteristics of manufacturing machinery are presumed to be uniform, the method described in the paper is robust enough to include different types of manufacturing bias in the future. An important result is that any misalignment in the coupling depends only on tolerances, not on any dimension of the coupling.


1993 ◽  
Vol 115 (1) ◽  
pp. 81-86 ◽  
Author(s):  
F. Etesami

This paper presents a mathematical model for specifying geometric tolerances. This model along with a syntax of tolerance specification will be referred to as the Tolerance Specification Language (TSL). TSL can be used to interpret ANSI Y14.5 geometric tolerancing specifications. The formalization of TSL is based on a set theoretic approach, especially on the concept of offset solids. In this model there is no classification of tolerance types, and there are no restrictions on the use of feature types. Instead, TSL allows the designer to control a feature from expanding, shrinking, or deforming beyond a specified tolerance value. All the tolerancing assertions in TSL apply to surface features and generate uniform tolerance zones. Using two and one dimensional tolerance specification facilities, TSL can approximate ANSI statements that apply to derived features, or generate non-uniform tolerance zones. The appendix of this paper discusses many examples from ANSI and their equivalent TSL form.


1978 ◽  
Vol 35 (2) ◽  
pp. 184-189 ◽  
Author(s):  
S. J. Westrheim ◽  
W. E. Ricker

Consider two representative samples of fish taken in different years from the same fish population, this being a population in which year-class strength varies. For the "parental" sample the length and age of the fish are determined and are used to construct an "age–length key," the fractions of the fish in each (short) length interval that are of each age. For the "filial" sample only the length is measured, and the parental age–length key is used to compute the corresponding age distribution. Trials show that the age–length key will reproduce the age-frequency distribution of the filial sample without systematic bias only if there is no overlap in length between successive ages. Where there is much overlap, the age–length key will compute from the filial length-frequency distribution approximately the parental age distribution. Additional bias arises if the rate of growth if a year-class is affected by its abundance, or if the survival rate in the population changes. The length of the fish present in any given part of a population's range can vary with environmental factors such as depth of the water; nevertheless, a sample taken in any part of that range can be used to compute age from the length distribution of a sample taken at the same time in any other part of the range, without systematic bias. But this of course is not likely to be true of samples taken from different populations of the species. Key words: age–length key, bias, Pacific ocean perch, Sebastes alutus


1984 ◽  
Vol 15 (4-5) ◽  
pp. 243-252 ◽  
Author(s):  
Helén Engelmark

A one-dimensional mathematical model is used to simulate the process of snow-melt infiltration in unsaturated frozen silt. Hydraulic and thermal parameters are mainly based on data given in the literature. Field observations in a watershed (of area 1.8 km2) are compared with simulated data and consequences on snow melt run-off are discussed.


Parasitology ◽  
1990 ◽  
Vol 101 (3) ◽  
pp. 429-434 ◽  
Author(s):  
P. K. Das ◽  
A. Manoharan ◽  
A. Srividya ◽  
B. T. Grenfell ◽  
D. A. P. Bundy ◽  
...  

SUMMARYThis paper examines the effects of host age and sex on the frequency distribution of Wuchereria bancrofti infections in the human host. Microfilarial counts from a large data base on the epidemiology of bancroftian filariasis in Pondicherry, South India are analysed. Frequency distributions of microfilarial counts divided by age are successfully described by zero-truncated negative binomial distributions, fitted by maximum likelihood. Parameter estimates from the fits indicate a significant trend of decreasing overdispersion with age in the distributions above age 10; this pattern provides indirect evidence for the operation of density-dependent constraints on microfilarial intensity. The analysis also provides estimates of the proportion of mf-positive individuals who are identified as negative due to sampling errors (around 5% of the total negatives). This allows the construction of corrected mf age–prevalence curves, which indicate that the observed prevalence may underestimate the true figures by between 25% and 100%. The age distribution of mf-negative individuals in the population is discussed in terms of current hypotheses about the interaction between disease and infection.


Sign in / Sign up

Export Citation Format

Share Document