statistical tolerance
Recently Published Documents


TOTAL DOCUMENTS

150
(FIVE YEARS 19)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Vol 1 ◽  
pp. 1847-1856
Author(s):  
Peter Gust ◽  
Alina Sersch ◽  
Marco Kuhlmeier

AbstractThe success of a company is directly linked to its economic objectives. One of the elementary objectives is to maximize profit by reducing the company's own costs in order to increase competitiveness in the market. State of the art is the function-oriented and unambiguous technical specification through the application of Geometrical Product Specifications (GPS). Linking costs related to the GPS system is currently only possible to a limited extent. This contribution presents an approach to quantify costs based on statistical tolerance analysis. The application is intended to determine the impact of a GPS-compliant specification in direct comparison to a non-compliant technical drawing by analyzing scrap rates. In this way, an assessment of the changes associated with the consistent application of the GPS system should be achieved. The results of the study show that a comparison is only possible to a certain degree due to the different characteristics. Based on this finding, an extended evaluation methodology is described.


2021 ◽  
Vol 11 (6) ◽  
pp. 2622
Author(s):  
Michael S. J. Walter ◽  
Christina Klein ◽  
Björn Heling ◽  
Sandro Wartzack

The importance of geometric deviations of components for the aesthetic and functional quality of products has been undisputed for decades. So, it is not surprising that not only have numerous researchers devoted themselves to this field, but also commercial software tools for the analysis and optimization of tolerance specifications (currently already fully integrated in 3D-CAD systems) have been available for around 30 years. However, it is even more surprising that the well-founded specification of tolerances and their analysis using a so-called statistical tolerance analysis are only established in a few companies. There is thus a contradiction between the proclaimed relevance of tolerances and their actual consideration in everyday business life. Thus, the question of the significance of geometric deviations and tolerances as well as the use of statistical tolerance analysis arises. Therefore, a survey among 102 German companies was carried out. The results are presented and discussed in this paper.


2021 ◽  
Vol 11 (4) ◽  
pp. 1860
Author(s):  
Paul Schaechtl ◽  
Benjamin Schleich ◽  
Sandro Wartzack

Fused Deposition Modelling (FDM) enables the fabrication of entire non-assembly mechanisms within a single process step, making previously required assembly steps dispensable. Besides the advantages of FDM, the manufacturing of these mechanisms implies some shortcomings such as comparatively large joint clearances and geometric deviations depending on machine-specific process parameters. The current state-of-the-art concerning statistical tolerance analysis lacks in providing suitable methods for the consideration of these shortcomings, especially for 3D-printed mechanisms. Therefore, this contribution presents a novel methodology for ensuring the functionality of fully functional non-assembly mechanisms in motion by means of a statistical tolerance analysis considering geometric deviations and joint clearance. The process parameters and hence the geometric deviations are considered in terms of empirical predictive models using machine learning (ML) algorithms, which are implemented in the tolerance analysis for an early estimation of tolerances and resulting joint clearances. Missing information concerning the motion behaviour of the clearance affected joints are derived by a multi-body-simulation (MBS). The exemplarily application of the methodology to a planar 8-bar mechanism shows its applicability and benefits. The presented methodology allows evaluation of the design and the chosen process parameters of 3D-printed non-assembly mechanisms through a process-oriented tolerance analysis to fully exploit the potential of Additive Manufacturing (AM) in this field along with its ambition: ‘Print first time right’.


Author(s):  
Nicholas A. Nechval

The problem of constructing one-sided exact statistical tolerance limits on the kth order statistic in a future sample of m observations from a distribution of log-location-scale family on the basis of an observed sample from the same distribution is considered. The new technique proposed here emphasizes pivotal quantities relevant for obtaining tolerance factors and is applicable whenever the statistical problem is invariant under a group of transformations that acts transitively on the parameter space. The exact tolerance limits on order statistics associated with sampling from underlying distributions can be found easily and quickly making tables, simulation, Monte Carlo estimated percentiles, special computer programs, and approximation unnecessary. Finally, numerical examples are given, where the tolerance limits obtained by using the known methods are compared with the results obtained through the proposed novel technique, which is illustrated in terms of the extreme-value and two-parameter Weibull distributions.


Author(s):  
Konstantinos Bacharoudis ◽  
Atanas Popov ◽  
Svetan Ratchev

AbstractIn the frame of a statistical tolerance analysis of complex assemblies, for example an aircraft wing, the capability to predict accurately and fast specified, very small quantiles of the distribution of the assembly key characteristic becomes crucial. The problem is significantly magnified, when the tolerance synthesis problem is considered in which several tolerance analyses are performed and thus, a reliability analysis problem is nested inside an optimisation one in a fully probabilistic approach. The need to reduce the computational time and accurately estimate the specified probabilities is critical. Therefore, herein, a systematic study on several state of the art simulation methods is performed whilst they are critically evaluated with respect to their efficiency to deal with tolerance analysis problems. It is demonstrated that tolerance analysis problems are characterised by high dimensionality, high non-linearity of the state functions, disconnected failure domains, implicit state functions and small probability estimations. Therefore, the successful implementation of reliability methods becomes a formidable task. Herein, advanced simulation methods are combined with in-house developed assembly models based on the Homogeneous Transformation Matrix method as well as off-the-self Computer Aided Tolerance tools. The main outcome of the work is that by using an appropriate reliability method, computational time can be reduced whilst the probability of defected products can be accurately predicted. Furthermore, the connection of advanced mathematical toolboxes with off-the-self 3D tolerance tools into a process integration framework introduces benefits to successfully deal with the tolerance allocation problem in the future using dedicated and powerful computational tools.


Sign in / Sign up

Export Citation Format

Share Document