Automatic Simulation of a Sequence of Hot-Former Forging Processes by a Rigid-Thermoviscoplastic Finite Element Method

1998 ◽  
Vol 120 (4) ◽  
pp. 291-296 ◽  
Author(s):  
M. S. Joun ◽  
H. K. Moon ◽  
Rajiv Shivpuri

A fully automatic forging simulation technique in hot-former forging is presented in this paper. A rigid-thermoviscoplastic finite element method is employed together with automatic simulation techniques. A realistic analysis model of the hot-former forging processes is given with emphasis on thermal analysis and simulation automation. The whole processes including forming, dwelling, ejecting, and transferring are considered in the analysis model and various cooling conditions are embedded in the analysis model. The approach is applied to a sequence of three-stage hot former forging process. Nonisothermal analysis results are compared with isothermal ones and the effect of heat transfer on predicted metal flows is discussed.

2007 ◽  
Vol 340-341 ◽  
pp. 737-742
Author(s):  
Yong Ming Guo

In this paper, single action die and double action die hot forging problems are analyzed by a combined FEM, which consists of the volumetrically elastic and deviatorically rigid-plastic FEM and the heat transfer FEM. The volumetrically elastic and deviatorically rigid-plastic FEM has some merits in comparison with the conventional rigid-plastic FEMs. Differences of calculated results for the two forging processes can be clearly seen in this paper. It is also verified that these calculated results are similar to those of the conventional rigid-plastic FEM in comparison with analyses of the same numerical examples by the penalty rigid-plastic FEM.


2013 ◽  
Vol 658 ◽  
pp. 340-344
Author(s):  
Somsak Siwadamrongpong ◽  
Supakit Rooppakhun ◽  
Natchaya Murachai ◽  
Pakorn Burakorn

Since the vehicle accident is one of the major causes of dead and injury in Thailand, especially the large passenger vehicle. The seat anchorage was often damaged and lead to high number and critical of patient. To improve the safety of large passenger vehicle, seat anchorage should be investigated. The aim of this research was to analyze strength of seat anchorages for the bus according to European standard ECE Regulation 80 using finite element method and DOE(Design of Experimental) approach. In this study, the boundary conditions on finite element model of seat structure were defined according to the regulation. It is expected that the simulation techniques could be advantaged for seat anchorage analysis. This result will be used for further improvement of the bus seat anchorage design for safety and cost reduction in design processes.


Sign in / Sign up

Export Citation Format

Share Document