vehicle seat
Recently Published Documents


TOTAL DOCUMENTS

237
(FIVE YEARS 55)

H-INDEX

16
(FIVE YEARS 3)

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8230
Author(s):  
Andrzej Zuska ◽  
Damian Frej ◽  
Jerzy Jackowski ◽  
Marcin Żmuda

This paper deals with the issues of the impact of vertical vibrations on a child seated in a child seat during a journey. Its purpose was to assess the impact of fastening the child seats and road conditions on the level of vibrations recorded on child seats. The paper describes the tested child seats, the methodology of the tests and the test apparatus included in the measuring track. The tests were carried out in real road conditions where the child seats were located on the rear seat of a passenger vehicle. One was attached with standard seat belts, and the other with the ISOFIX base. When driving on roads with three types of surface, the following vertical accelerations were measured: seat of the child seats, the rear seat of the vehicle and the ISOfix base. The recorded accelerations were first analyzed in the time domain and then in the frequency domain. Three indexes (r.m.s, rmq and VDV) were used to assess the vibration comfort. Research has shown that the classic method of fastening a child seat with standard seat belts is more advantageous in terms of vibration comfort. Calculated indicators confirmed the negative impact of separating the child seat from the rear seat of the vehicle using the IQ ISOFIX base.


2021 ◽  
Vol 11 (23) ◽  
pp. 11539
Author(s):  
Cong Hung Nguyen ◽  
Cong Minh Ho ◽  
Kyoung Kwan Ahn

This research introduces an air spring vibration isolator system (ASVIS) based on a negative-stiffness structure (NSS) to improve the vehicle seat’s vibration isolation performance at low excitation frequencies. The main feature of the ASVIS consists of two symmetric bellows-type air springs which were designed on the basis of a negative stiffness mechanism. In addition, a crisscross structure with two straight bars was also used as the supporting legs to provide the nonlinear characteristics with NSS. Moreover, instead of using a vertical mechanical spring, a sleeve-type air spring was employed to provide positive stiffness. As a result, as the weight of the driver varies, the dynamic stiffness of the ASVIS can be easily adjusted and controlled. Next, the effects of the dimension parameters on the nonlinear force and nonlinear stiffness of ASVIS were analyzed. A design process for the ASVIS is provided based on the analytical results in order to achieve high static–low dynamic stiffness. Finally, numerical simulations were performed to evaluate the effectiveness of the ASVIS. The results obtained in this paper show that the values of the seat displacement of the ASVIS with NSS were reduced by 77.16% in comparison with those obtained with the traditional air spring isolator without NSS, which indicates that the design of the ASVIS isolator with NSS allows the effective isolation of vibrations in the low-frequency region.


2021 ◽  
Vol 29 (11) ◽  
pp. 1025-1032
Author(s):  
Sangchul Ryu ◽  
Yongdu Jun
Keyword(s):  

Author(s):  
Hyung-sub Yook ◽  
◽  
Jong-Kweon Pyun ◽  
Chang-Hee Suh ◽  
Sang-Gyun Oh ◽  
...  

Author(s):  
Rongkang Luo ◽  
Peibao Wu ◽  
Jiabin Luo ◽  
Zhichao Hou ◽  
Le He ◽  
...  

A seat suspension contributes greatly to vehicle ride comfort as a result of direct contact with the human body. Friction in a seat suspension produces strong non-smooth nonlinearity in seat dynamics, which makes the simulation-based optimization on the seat suspension’s performance time-consuming. This study tries to address parameter optimization on a vehicle seat suspension with the friction force in an analytical approach. A two degrees of freedom model is firstly established for the human body-seat system with friction and subjected to bandlimited random excitation. The nonlinear model is converted into an equivalent linear model by using Gaussian linearization. The dynamic responses of the linear model have then derived analytically and validated by Monte Carlo simulations. Based on the analytical solution, a multi-objective optimization strategy is proposed for the seat suspension. The acceleration of the human body and the suspension travel are chosen as the objective indexes to evaluate seat performance. Simulation results show that the proposed optimization strategy is efficient, where a global optimum is guaranteed owing to the analytical expression of the objective function. The optimization approach taking advantage of model linearization can be applied to similar mechanical systems with friction.


2021 ◽  
Vol 11 (20) ◽  
pp. 9426
Author(s):  
Kaiwei Wu ◽  
Chuanbo Ren ◽  
Yuanchang Chen

Vehicles driving on the road continuously suffer low-frequency and high-intensity road excitation, which can cause the occupant feelings of tension and dizziness. To solve this problem, a three-degree-of-freedom vehicle suspension system model including vehicle seat is established and a linear function equivalent excitation method is proposed. The optimization of the random excitation is transformed into the optimization of constant force in a discrete time interval, which introduces the adaptive weighted particle swarm optimization algorithm to optimize the delay and feedback gain parameters in the feedback control of time delay. In this paper, the stability switching theory is used for the first time to analyze the stability interval of 3-DOF time-delay controlled active suspension, which ensures the stability of the control system. The numerical simulation results show that the algorithm can reduce vertical passenger acceleration and vehicle acceleration, respectively, by 13.63% and 28.38% on average, and 29.99% and 47.23% on random excitation, compared with active suspension and passive suspension based on inverse control. The effectiveness of the method to suppress road random interference is verified, which provides a theoretical reference for further study of suspension performance optimization with time-delay control.


Author(s):  
Baekhee Lee ◽  
Byoung-Keon (Daniel) Park ◽  
Kihyo Jung ◽  
Jangwoon Park

Vehicle-seat dimensions measured at specific cross-sections have been historically utilized as shape determinants to evaluate a driver’s seat fit. The present study is intended to quantify the relationships between seat fits and the seat dimensions for designing an ergonomic vehicle seat. Eight seat engineers evaluated seat fits for 54 different driver seats based on their expertise. Five seat dimensions were measured at six cross-sectional planes using a custom-built, computerized program. The best-subset-logistic-regression method was employed to model the relationships between the seat fit and the seat dimensions. As a result, significant seat dimensions, such as insert width, bolster height, and/or bolster curvature, on the subjective seat fit (e.g., loose-fit, right-fit, and tight-fit) were quantified. The developed models showed 98% overall classification accuracy throughout the cross-sectional planes. The models promote a digital design process of an automobile seat, which would increase the efficiency of the process and reduce the development costs.


Sign in / Sign up

Export Citation Format

Share Document