Elastodynamic Analysis and Control of Industrial Robotic Manipulators With Piezoelectric-Material-Based Elastic Members

1995 ◽  
Vol 117 (4) ◽  
pp. 640-643 ◽  
Author(s):  
Seung-Bok Choi ◽  
B. S. Thompson ◽  
M. V. Gandhi

This technical brief addresses the dynamic modeling and control methodology to suppress structural deflections of industrial robotic manipulators featuring elastic members retrofitted with surface bonded piezoelectric actuators and sensors. The dynamic modeling is accomplished by developing a finite element formulation. The governing equation of motion is then modified by condensing the electric potential vectors, and subsequently two different feedback controllers are established: a constantgain feedback controller and a constant-amplitude feedback controller. Computer simulations are undertaken in order to demonstrate the superior performance characteristics, such as smaller deflections at the end-effector, to be accrued from the proposed methodology.

2012 ◽  
Vol 79 (4) ◽  
Author(s):  
Guoping Wang ◽  
Bao Rong ◽  
Ling Tao ◽  
Xiaoting Rui

Efficient, precise dynamic modeling and control of complex underwater towed systems has become a research focus in the field of multibody dynamics. In this paper, based on finite segment model of cable, by defining the new state vectors and deducing the new transfer equations of underwater towed systems, a new highly efficient method for dynamic modeling and simulation of underwater towed systems is presented and the pay-out/reel-in process of towed cable is studied. The computational efficiency and numerical stability of the proposed method are discussed. When using the method to study the dynamics of underwater towed systems, it avoids the global dynamic equations of system, and simplifies solving procedure. Irrespective of the degree of freedom of underwater towed system, the matrices involved in the proposed method are always very small, which greatly improve the computational efficiency and avoids the computing difficulties caused by too high matrix orders for complex underwater towed systems. Formulations of the method as well as numerical simulations are given to validate the proposed method.


2019 ◽  
Vol 5 (1) ◽  
pp. 8
Author(s):  
Tim Chen ◽  
Alfred Hausladen ◽  
Jonathan Sstamler ◽  
Dneil Granger ◽  
Abu Hurayraasiv Khanand ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document