Comparison Between Linear and Nonlinear Transient Analysis Techniques to Find the Stability of a Rigid Rotor

1999 ◽  
Vol 121 (1) ◽  
pp. 198-201 ◽  
Author(s):  
Ram Turaga ◽  
A. S. Sekhar ◽  
B. C. Majumdar

The subsynchronous whirl stability limit of a rigid rotor supported on two symmetrical finite journal bearings has been studied using the linearised perturbation method and the nonlinear transient analysis technique. A quantitative comparison for journal bearings with different l/d ratios has been provided.

1980 ◽  
Vol 102 (3) ◽  
pp. 291-298 ◽  
Author(s):  
D. F. Li ◽  
K. C. Choy ◽  
P. E. Allaire

Multilobe journal bearings are often used to improve the stability response of rotating machinery. Such machines operate near the stability threshold of the bearing-rotor system. This work determines the linearized stability threshold of four multilobe journal bearings: elliptical, offset elliptical, three lobe, and four lobe. A nonlinear transient analysis of a rigid rotor in each of these bearings is carried out above and below the threshold speed. Shaft orbits and bearing forces are calculated. A numerical fast Fourier transform analysis is used to obtain the frequency content of the nonlinear orbit.


Author(s):  
S. K. Kakoty ◽  
S. K. Laha ◽  
P. Mallik

A theoretical analysis has been carried out to determine the stability of rigid rotor supported on two symmetrical finite two-layered porous oil journal bearings. The stability curves have been drawn for different eccentricity ratios and Sommerfeld numbers. The effect of bearing feeding parameter, L/D ratio on the stability is also investigated. This paper also deals with a theoretical investigation of stability using a non-linear transient method. This analysis gives the journal centre locus and from this the system stability can be determined. With the help of graphics, several trajectories of the journal centre have been obtained for different operating conditions. Finally a comparison between single-layered porous bearing and the two-layered porous bearing is presented here.


Author(s):  
Mohamed Amine Hassini ◽  
Mihai Arghir

A simplified, new method for evaluating the nonlinear fluid forces in air bearings was recently proposed (Hassini, M. A., and Arghir, M., 2012, “Simplified Nonlinear Transient Analysis Method for Gas Bearings,” ASME J. Tribol., 134(1), p. 011704). The method is based on approximating the frequency dependent linearized dynamic coefficients at several eccentricities, by second-order rational functions. A set of ordinary differential equations is then obtained using the inverse of Laplace transform linking the fluid forces components to the rotor displacements. Coupling these equations with the equations of motion of the rotor leads to a system of ordinary differential equations where displacements and velocities of the rotor and the fluid forces come as unknowns. The numerical results stemming from the proposed approach showed good agreement with the results obtained by solving the full nonlinear transient Reynolds equation coupled to the equation of motion of a point mass rotor. However, the method (Hassini, M. A., and Arghir, M., 2012, “Simplified Nonlinear Transient Analysis Method for Gas Bearings,” ASME J. Tribol., 134(1), p. 011704) requires a special treatment to ensure continuity of the values of the fluid forces and their first derivatives. More recently, the same authors (Hassini, M. A., and Arghir, M., 2013, “A New Approach for the Stability Analysis of Rotors Supported by Gas Bearings,” ASME Paper No. GT2013-94802) showed the benefits of imposing the same set of stable poles to the rational functions approximating the impedances. These constrains simplified the expressions of the fluid forces and avoided the introduction of false poles. The method in (Hassini, M. A., and Arghir, M., 2013, “A New Approach for the Stability Analysis of Rotors Supported by Gas Bearings,” ASME Paper No. GT2013-94802) was applied in the frame of the small perturbation analysis for calculating Campbell and stability diagrams. This approach also enhances the consistency of the fluid forces approximated with the same set of poles because they become naturally continuous over the whole bearing clearance while their increments were not. The present paper shows how easily the new formulation may be applied to compute the nonlinear response of systems with multiple degrees of freedom such as a flexible rotor supported by two air bearings.


Author(s):  
Mohamed Amine Hassini ◽  
Mihai Arghir

A simplified nonlinear transient analysis method for gas bearings was recently published by the authors (Hassini, M. A., and Arghir, M., 2012, “Simplified Nonlinear Transient Analysis Method for Gas Bearings,” J. Tribol., 134(1), 011704). The method uses the fact that linearized dynamic characteristics of gas bearings, namely the impedances, can be approximated by rational transfer functions. The method gave good results if the rational transfer function approach approximated the linearized dynamic characteristics well. Indeed, each of the four complex impedances Zαβ,α,β={x,y} had one or two poles depending on the order of the rational function that were used. These poles appear as supplementary eigenvalues of the extended matrix of the homogeneous system of first order differential equations describing the model of the rotor. They govern the stability of the dynamic model in the same way as the original eigenvalues do and therefore they impose non-negligible constraints on the rational function approximation of the impedances of gas bearings. The present improvement of the method overrides this problem. The basic idea is to impose the same set of poles for Zxx, Zxy, Zyx, and Zyy. By imposing this constraint, the poles are stable and the introduction of artificial instability or erratic eigenvalues is avoided. Campbell and stability diagrams naturally taking into account the variation of the dynamic coefficients with the excitation frequency can now be easily plotted. For example, the method is used for analyzing the stability of rigid and flexible rotors supported by two identical gas bearings modeled with second order rational transfer functions. The method can be applied to any bearing or seal whose impedance is approximated by rational transfer functions.


Author(s):  
Ram Turaga

The influence of deterministic surface texture on the sub-synchronous whirl stability of a rigid rotor has been studied. Non-linear transient stability analysis has been performed to study the stability of a rigid rotor supported on two symmetric journal bearings with a rectangular dimple of large aspect ratio. The surface texture parameters considered are dimple depth to minimum film thickness ratio and the location of the dimple on the bearing surface. Journal bearings of different Length to diameter ratios have been studied. The governing Reynolds equation for finite journal bearings with incompressible fluid has been solved using the Finite Element Method under isothermal conditions. The trajectories of the journal center have been obtained by solving the equations of motion of the journal center by the fourth-order Runge-Kutta method. When the dimple is located in the raising part of the pressure curve the positive rectangular dimple is seen to decrease the stability whereas the negative rectangular dimple is seen to improve the stability of the rigid rotor.


Sign in / Sign up

Export Citation Format

Share Document