Passivity-Based Impact and Force Control of a Pneumatic Actuator

Author(s):  
Yong Zhu ◽  
Eric J. Barth

To carry out stable and dissipative contact tasks with an arbitrary environment, it is critical for a pneumatic actuator to be passive with respect to a supply rate consisting of the spool valve position input and the actuation force output. A pseudo-bond graph model with the inner product between spool valve position input and actuation force output as a pseudo-supply rate is developed. Using this pseudo-bond graph model, an open-loop pneumatic actuator controlled by a four-way proportional valve can be proven to not be passive with respect to the pseudo-supply rate. Conversely, it can also be proven to be passive with respect to the pseudo-supply rate under a closed-loop feedback control law. The passivity of the closed-loop pneumatic actuator is verified in impact and force control experiments. The experimental results also validate the pseudo-bond graph model. The pseudo-bond graph model is intended for passivity analysis and controller design for pneumatic actuation applications where contact stability (such as robotic assembly) and/or stable interaction with a passive environment (such as human-robot interaction) is required.

Author(s):  
Scott M. Lyon ◽  
Mark S. Evans

Abstract A dynamic model of a hydraulic actuator/spool valve combination is developed using the bond graph method. Feedback linearization is used to develop a force controller for the system using hydraulic pressure in each chamber of the actuator along with piston position and velocity as feedback. The use of a feedforward term to compensate for the seal friction within the actuator provides for a stable and accurate controller. Velocity control is achieved through calculation of the reference force required to overcome the seal friction and produce the acceleration required to reach the desired velocity. It is shown that the use of such a force controller allows for an acceptable transition from velocity to force control when the piston comes in contact with an external surface.


2008 ◽  
Vol 1 (06) ◽  
pp. 329-334
Author(s):  
S. Rabih ◽  
C. Turpin ◽  
S. Astier

Author(s):  
Axel Fehrenbacher ◽  
Christopher B. Smith ◽  
Neil A. Duffie ◽  
Nicola J. Ferrier ◽  
Frank E. Pfefferkorn ◽  
...  

The objective of this research is to develop a closed-loop control system for robotic friction stir welding (FSW) that simultaneously controls force and temperature in order to maintain weld quality under various process disturbances. FSW is a solid-state joining process enabling welds with excellent metallurgical and mechanical properties, as well as significant energy consumption and cost savings compared to traditional fusion welding processes. During FSW, several process parameter and condition variations (thermal constraints, material properties, geometry, etc.) are present. The FSW process can be sensitive to these variations, which are commonly present in a production environment; hence, there is a significant need to control the process to assure high weld quality. Reliable FSW for a wide range of applications will require closed-loop control of certain process parameters. A linear multi-input-multi-output process model has been developed that captures the dynamic relations between two process inputs (commanded spindle speed and commanded vertical tool position) and two process outputs (interface temperature and axial force). A closed-loop controller was implemented that combines temperature and force control on an industrial robotic FSW system. The performance of the combined control system was demonstrated with successful command tracking and disturbance rejection. Within a certain range, desired axial forces and interface temperatures are achieved by automatically adjusting the spindle speed and the vertical tool position at the same time. The axial force and interface temperature is maintained during both thermal and geometric disturbances and thus weld quality can be maintained for a variety of conditions in which each control strategy applied independently could fail.


1975 ◽  
Vol 97 (2) ◽  
pp. 184-188 ◽  
Author(s):  
A. S. Perelson

The lack of arbitrariness in the choice of bond graph sign conventions is established. It is shown that an unoriented bond graph may have no unique meaning and that with certain choices of orientation a bond graph may not correspond to any lumped parameter system constructed from the same set of elements. Network interpretations of these two facts are given. Defining a bond graph as an oriented object leads to the consideration of equivalence classes of oriented bond graphs which represent the same system. It is also shown that only changes in the orientation of bonds connecting 0-junctions and 1-junctions can lead to changes in the observable properties of a bond graph model.


2015 ◽  
Vol 22 (11) ◽  
pp. 4205-4212
Author(s):  
Lei Lou ◽  
Wan-rong Wu ◽  
Zhao-Qiang Wang ◽  
Xiang-jing Liang

Sign in / Sign up

Export Citation Format

Share Document