Mechanisms of Turbulence Transport in a Turbine Blade Coolant Passage With a Rib Turbulator

1999 ◽  
Vol 121 (1) ◽  
pp. 152-159 ◽  
Author(s):  
P. K. Panigrahi ◽  
S. Acharya

This paper provides detailed measurements of the flow in a ribbed coolant passage, and attempts to delineate the important mechanisms that contribute to the production of turbulent shear stress and the normal stresses. It is shown that the separated flow behind the rib is dictated by large-scale structures, and that the dynamics of the large-scale structures, associated with sweep, ejection, and inward and outward interactions, all play an important role in the production of the turbulent shear stress. Unlike the turbulent boundary layer, in a separated shear flow past the rib, the inward and outward interaction terms are both important, accounting for a negative stress production that is nearly half of the positive stress produced by the ejection and sweep mechanisms. It is further shown that the shear layer wake persists well past the re-attachment location of the shear layer, implying that the flow between ribbed passages never recovers to that of a turbulent boundary layer. Therefore, even past re-attachment, the use of statistical turbulence models that ignore coherent structure dynamics is inappropriate.

Author(s):  
P. K. Panigrahi ◽  
S. Acharya

This paper provides detailed measurements of the flow in a ribbed coolant passage, and attempts to delineate the important mechanisms that contribute to the production of turbulent shear stress and the normal stresses. It is shown that the separated flow behind the rib is dictated by large scale structures, and that the dynamics of the large scale structures, associated with sweep, ejection, and inward and outward interactions all play an important role in the production of the turbulent shear stress. Unlike the turbulent boundary layer, in a separated shear flow past the rib, the inward and outward interaction terms are both important accounting for a negative stress production that is nearly half of the positive stress produced by the ejection and sweep mechanisms. It is further shown, that the shear layer wake persists well past the re-attachment location of the shear layer, implying that the flow between ribbed passages never recovers to that of a turbulent boundary layer. Therefore, even past re-attachment, the use of statistical turbulence models that ignore coherent structure dynamics is inappropriate.


1990 ◽  
Vol 211 ◽  
pp. 285-307 ◽  
Author(s):  
Emerick M. Fernando ◽  
Alexander J. Smits

This investigation describes the effects of an adverse pressure gradient on a flat plate supersonic turbulent boundary layer (Mf ≈ 2.9, βx ≈ 5.8, Reθ, ref ≈ 75600). Single normal hot wires and crossed wires were used to study the Reynolds stress behaviour, and the features of the large-scale structures in the boundary layer were investigated by measuring space–time correlations in the normal and spanwise directions. Both the mean flow and the turbulence were strongly affected by the pressure gradient. However, the turbulent stress ratios showed much less variation than the stresses, and the essential nature of the large-scale structures was unaffected by the pressure gradient. The wall pressure distribution in the current experiment was designed to match the pressure distribution on a previously studied curved-wall model where streamline curvature acted in combination with bulk compression. The addition of streamline curvature affects the turbulence strongly, although its influence on the mean velocity field is less pronounced and the modifications to the skin-friction distribution seem to follow the empirical correlations developed by Bradshaw (1974) reasonably well.


1975 ◽  
Vol 70 (1) ◽  
pp. 127-148 ◽  
Author(s):  
B. Van Den Berg ◽  
A. Elsenaar ◽  
J. P. F. Lindhout ◽  
P. Wesseling

First a three-dimensional turbulent boundary-layer experiment is described. This has been carried out with the specific aim of providing a test-case for calculation methods. Much attention has been paid to the design of the test set-up. An infinite swept-wing flow has been simulated with good accuracy. The initially two-dimensional boundary layer on the test plate was subjected to an adverse pressure gradient, which led to three-dimensional separation near the trailing edge of the plate. Next, a calculation method for three-dimensional turbulent boundary layers is discussed. This solves the boundary-layer equations numerically by finite differences. The turbulent shear stress is obtained from a generalized version of Bradshaw's two-dimensional turbulent shear stress equation. The results of the calculations are compared with those of the experiment. Agreement is good over a considerable distance; but large discrepancies are apparent near the separation line.


For over a quarter of a century it has been recognized that turbulent shear flows are dominated by large-scale structures. Yet the majority of models for turbulent mixing fail to include the properties of the structures either explicitly or implicitly. The results obtained using these models may appear to be satisfactory, when compared with experimental observations, but in general these models require the inclusion of empirical constants, which render the predictions only as good as the empirical database used in the determination of such constants. Existing models of turbulence also fail to provide, apart from its stochastic properties, a description of the time-dependent properties of a turbulent shear flow and its development. In this paper we introduce a model for the large-scale structures in a turbulent shear layer. Although, with certain reservations, the model is applicable to most turbulent shear flows, we restrict ourselves here to the consideration of turbulent mixing in a two-stream compressible shear layer. Two models are developed for this case that describe the influence of the large-scale motions on the turbulent mixing process. The first model simulates the average behaviour by calculating the development of the part of the turbulence spectrum related to the large-scale structures in the flow. The second model simulates the passage of a single train of large-scale structures, thereby modelling a significant part of the time-dependent features of the turbulent flow. In both these treatments the large-scale structures are described by a superposition of instability waves. The local properties of these waves are determined from linear, inviscid, stability analysis. The streamwise development of the mean flow, which includes the amplitude distribution of these instability waves, is determined from an energy integral analysis. The models contain no empirical constants. Predictions are made for the effects of freestream velocity and density ratio as well as freestream Mach number on the growth of the mixing layer. The predictions agree very well with experimental observations. Calculations are also made for the time-dependent motion of the turbulent shear layer in the form of streaklines that agree qualitatively with observation. For some other turbulent shear flows the dominant structure of the large eddies can be obtained similarly using linear stability analysis and a partial justification for this procedure is given in the Appendix. In wall-bounded flows a preliminary analysis indicates that a linear, viscous, stability analysis must be extended to second order to derive the most unstable waves and their subsequent development. The extension of the present model to such cases and the inclusion of the effects of chemical reactions in the models are also discussed.


2002 ◽  
Vol 124 (4) ◽  
pp. 645-655 ◽  
Author(s):  
Ralph J. Volino

Boundary layer separation, transition and reattachment have been studied experimentally under low-pressure turbine airfoil conditions. Cases with Reynolds numbers (Re) ranging from 25,000 to 300,000 (based on suction surface length and exit velocity) have been considered at low (0.5%) and high (9% inlet) free-stream turbulence levels. Mean and fluctuating velocity and intermittency profiles are presented for streamwise locations all along the airfoil, and turbulent shear stress profiles are provided for the downstream region where separation and transition occur. Higher Re or free-stream turbulence level moves transition upstream. Transition is initiated in the shear layer over the separation bubble and leads to rapid boundary layer reattachment. At the lowest Re, transition did not occur before the trailing edge, and the boundary layer did not reattach. Turbulent shear stress levels can remain low in spite of high free-stream turbulence and high fluctuating streamwise velocity in the shear layer. The beginning of a significant rise in the turbulent shear stress signals the beginning of transition. A slight rise in the turbulent shear stress near the trailing edge was noted even in those cases which did not undergo transition or reattachment. The present results provide detailed documentation of the boundary layer and extend the existing database to lower Re. The present results also serve as a baseline for an investigation of turbulence spectra in Part 2 of the present paper, and for ongoing work involving transition and separation control.


1997 ◽  
Vol 119 (4) ◽  
pp. 876-884 ◽  
Author(s):  
F. R. Menter

A formalism will be presented which allows transforming two-equation eddy viscosity turbulence models into one-equation models. The transformation is based on Bradshaw’s assumption that the turbulent shear stress is proportional to the turbulent kinetic energy. This assumption is supported by experimental evidence for a large number of boundary layer flows and has led to improved predictions when incorporated into two-equation models of turbulence. Based on it, a new one-equation turbulence model will be derived from the k-ε model. The model will be tested against the one-equation model of Baldwin and Barth, which is also derived from the k-ε model (plus additional assumptions) and against its parent two-equation model. It will be shown that the assumptions involved in the derivation of the Baldwin-Barth model cause significant problems at the edge of a turbulent layer.


Author(s):  
Ralph J. Volino

Boundary layer separation, transition and reattachment have been studied experimentally under low-pressure turbine airfoil conditions. Cases with Reynolds numbers (Re) ranging from 25,000 to 300,000 (based on suction surface length and exit velocity) have been considered at low (0.5%) and high (9% inlet) free-stream turbulence levels. Mean and fluctuating velocity and intermittency profiles are presented for streamwise locations all along the airfoil, and turbulent shear stress profiles are provided for the downstream region where separation and transition occur. Higher Re or free-stream turbulence level moves transition upstream. Transition is initiated in the shear layer over the separation bubble and leads to rapid boundary layer reattachment. At the lowest Re, transition did not occur before the trailing edge, and the boundary layer did not reattach. Turbulent shear stress levels can remain low in spite of high free-stream turbulence and high fluctuating streamwise velocity in the shear layer. The beginning of a significant rise in the turbulent shear stress signals the beginning of transition. A slight rise in the turbulent shear stress near the trailing edge was noted even in those cases which did not undergo transition or reattachment. The present results provide detailed documentation of the boundary layer and extend the existing database to lower Re. The present results also serve as a baseline for an investigation of turbulence spectra in Part 2 of the present paper, and for ongoing work involving transition and separation control.


Sign in / Sign up

Export Citation Format

Share Document