Stress Analysis of Shell Intersections With Torus Transition Under Internal Pressure Loading

1997 ◽  
Vol 119 (3) ◽  
pp. 288-292 ◽  
Author(s):  
V. N. Skopinsky

Thin shell theory and finite element method were used to investigate shell intersections with torus transition. The developed special-purpose computer program SAIS is employed for elastic stress analysis of the shell intersections. Comparison of calculated results with experimental data are presented. The parametric study of models for the radial nozzle connections in shells under internal pressure loading was performed. The results are presented in graphical form. Nondimensional geometric parameters are considered to analyze the effects of changing these parameters on stress ratios in the shell intersections.

1994 ◽  
Vol 116 (4) ◽  
pp. 431-436 ◽  
Author(s):  
V. N. Skopinsky ◽  
N. A. Berkov

This paper presents the numerical procedure for the stress analysis of the intersecting shells consisting of an ellipsoidal shell and nozzle. Thin shell theory and finite element method are used. The developed special-purpose computer program SAIS is employed for elastic stress analysis of the model joints of the ellipsoidal shell with nozzle. The parametric study of the joints under internal pressure loading was performed. The results are presented in graphical form. Nondimensional geometric parameters are considered to analyze the effects of changing these parameters on the maximum effective stresses in the shells.


1993 ◽  
Vol 115 (3) ◽  
pp. 275-282 ◽  
Author(s):  
V. N. Skopinsky

This paper presents the numerical approach for the stress analysis of the intersecting shells. For a systematic study of this problem, the classification of the model joints is introduced. Stress analysis has been made with the application of the finite element method based on the modified mixed formulation. The developed special-purpose computer program SAIS is used for elastic stress analysis of the model joints of the intersecting shells. Comparison of the calculated and experimental results for ORNL-1 model are presented for internal pressure and moment loadings. The parametric study of the model joints of the intersecting cylindrical shells under internal pressure loading was performed. The presented results show the effects of changing various geometric and angular parameters on the maximum effective stresses in the shells.


1981 ◽  
Vol 103 (1) ◽  
pp. 107-111
Author(s):  
D. P. Updike

Elastic stress analysis of a right angle tee branch pipe connection of two pipes of identical diameter and thickness connected through 45-deg chamfer corner sections is developed for internal pressure loading. Stresses in the crotch portion of the vessel are determined. These results are presented in the form of a table of factors useful for rapid calculation of approximate values of the peak stresses. The existence of a structurally optimum size of chamfer is demonstrated.


2014 ◽  
Vol 137 (2) ◽  
Author(s):  
V. N. Skopinsky ◽  
N. A. Berkov ◽  
R. A. Vozhov

The objective of this paper is the further investigation of the shell intersection problem. The pad reinforced nozzle connections of the cylindrical vessel under internal and external loads are investigated using elastic–plastic analysis and the stress analysis in intersecting shells (SAIS) special-purpose computer program. The method for determining the plastic limit load based on the maximum criterion of the rate of the change of the relative plastic work and program module LOAD_PL for its realization are presented. The results of comparisons with the twice elastic-slope (TES) method were considered for determining the plastic limit load using known experimental data for models of a pad reinforced cylindrical vessel with a radial nozzle under a transverse force. The results of a parametric study of unreinforced and pad reinforced vessel models with a nozzle under internal pressure, in-plane moment, and out-plane moment loadings are discussed.


1996 ◽  
Vol 24 (4) ◽  
pp. 349-366 ◽  
Author(s):  
T-M. Wang ◽  
I. M. Daniel ◽  
K. Huang

Abstract An experimental stress-strain analysis by means of the Moiré method was conducted in the area of the tread and belt regions of tire sections. A special loading fixture was designed to support the tire section and load it in a manner simulating service loading and allowing for Moiré measurements. The specimen was loaded by imposing a uniform fixed deflection on the tread surface and increasing the internal pressure in steps. Moiré fringe patterns were recorded and analyzed to obtain strain components at various locations of interest. Maximum strains in the range of 1–7% were determined for an effective inflation pressure of 690 kPa (100 psi). These results were in substantial agreement with results obtained by a finite element stress analysis.


1967 ◽  
Vol 89 (3) ◽  
pp. 554-560 ◽  
Author(s):  
A. A. Giardini

Significant sources of error independent of the apparatus are analyzed on the basis of experimental experience and elastic theory. All are mechanical in nature and subject to corrective action. The most serious is found to be self-generating internal pressure differences which result from differential elastic and dimensional values in multicomponent assemblies. High-pressure data on elastic constants, relative critical yield stresses, radial displacements, and ratios of external to internal pressure for various compositional arrangements of pyrophyllite, MgO, NaCl, and AgCl are given in graphical form. Observance of suggested corrective measures can render the inductive coil technique capable of operational accuracies of 2 percent or better in compressibility and resistivity measurements.


Sign in / Sign up

Export Citation Format

Share Document