scholarly journals Stress analysis of a radial nozzle attached to a cylindrical shell under internal pressure

1974 ◽  
Author(s):  
A. J. Edmondson
1997 ◽  
Vol 119 (3) ◽  
pp. 288-292 ◽  
Author(s):  
V. N. Skopinsky

Thin shell theory and finite element method were used to investigate shell intersections with torus transition. The developed special-purpose computer program SAIS is employed for elastic stress analysis of the shell intersections. Comparison of calculated results with experimental data are presented. The parametric study of models for the radial nozzle connections in shells under internal pressure loading was performed. The results are presented in graphical form. Nondimensional geometric parameters are considered to analyze the effects of changing these parameters on stress ratios in the shell intersections.


1996 ◽  
Vol 24 (4) ◽  
pp. 349-366 ◽  
Author(s):  
T-M. Wang ◽  
I. M. Daniel ◽  
K. Huang

Abstract An experimental stress-strain analysis by means of the Moiré method was conducted in the area of the tread and belt regions of tire sections. A special loading fixture was designed to support the tire section and load it in a manner simulating service loading and allowing for Moiré measurements. The specimen was loaded by imposing a uniform fixed deflection on the tread surface and increasing the internal pressure in steps. Moiré fringe patterns were recorded and analyzed to obtain strain components at various locations of interest. Maximum strains in the range of 1–7% were determined for an effective inflation pressure of 690 kPa (100 psi). These results were in substantial agreement with results obtained by a finite element stress analysis.


2017 ◽  
Vol 139 (2) ◽  
Author(s):  
Qi Dong ◽  
Q. M. Li ◽  
Jinyang Zheng

Strain growth is a phenomenon observed in the elastic response of containment vessels subjected to internal blast loading. The local dynamic response of a containment vessel may become larger in a later stage than its response in the earlier stage. In order to understand the possible mechanisms of the strain growth phenomenon in a cylindrical vessel, dynamic elastic responses of a finite-length cylindrical shell with different boundary conditions subjected to internal pressure pulse are studied by finite-element simulation using LS-DYNA. It is found that the strain growth in a finite-length cylindrical shell with sliding–sliding boundary conditions is caused by nonlinear modal coupling. Strain growth in a finite-length cylindrical shell with free–free or simply supported boundary conditions is primarily caused by the linear modal superposition, possibly enhanced by the nonlinear modal coupling. The understanding of these strain growth mechanisms can guide the design of cylindrical containment vessels.


2000 ◽  
Author(s):  
Masahide Katsuo ◽  
Toshiyuki Sawa ◽  
Masahiro Yoneno

Abstract This study deals with the stress analysis and the strength evaluation of a bonded shrink fitted joint of circular pipes subjected to an internal pressure and a tensile load. In the analysis, two pipes and the adhesive are replaced with finite hollow cylinders, and the stress distributions in the joint are analyzed by using the axisymmetric theory of elasticity. From the numerical calculations, the following results are obtained: (1) Both the compressive and shear stresses at the interface between the adherend and the adhesive increase as Young’s modulus of the adherend increases. (2) The stress becomes singular at the edges of the interfaces. (3) The joint strength can be evaluated using the compressive and shear stresses near the edge of the interface. In the experiments, bonded shrink fitted joints consisting of dissimilar circular pipes were manufactured, and rupture tests of the joints were carried out by applying an internal pressure, and a tensile load to the joints. From the results, the joint strength of the bonded shrink fitted joint was found to be greater than that of the shrink fitted joint. Furthermore, the numerical results are in fairly good agreement with the experimental ones.


1981 ◽  
Vol 103 (1) ◽  
pp. 107-111
Author(s):  
D. P. Updike

Elastic stress analysis of a right angle tee branch pipe connection of two pipes of identical diameter and thickness connected through 45-deg chamfer corner sections is developed for internal pressure loading. Stresses in the crotch portion of the vessel are determined. These results are presented in the form of a table of factors useful for rapid calculation of approximate values of the peak stresses. The existence of a structurally optimum size of chamfer is demonstrated.


1967 ◽  
Vol 34 (2) ◽  
pp. 299-307 ◽  
Author(s):  
D. E. Johnson

An analytical investigation is made of the stresses due to external forces and moments acting on an elastic nonradial circular cylindrical nozzle attached to a spherical shell. The nozzle (a cylindrical shell) is nonradial in the sense that its axis is inclined and does not pass through the center of the sphere. Results are obtained by combining solutions from shell theory by a Galerkin-type method so as to satisfy boundary conditions at the intersection of the two shells. It is found that, as the nozzle inclination increases, the stresses change gradually from those previously given by Bijlaard for the radial nozzle.


Sign in / Sign up

Export Citation Format

Share Document