Procedures for Calibrating Hourly Simulation Models to Measured Building Energy and Environmental Data

1998 ◽  
Vol 120 (3) ◽  
pp. 193-204 ◽  
Author(s):  
J. S. Haberl ◽  
T. E. Bou-Saada

This paper discusses procedures for creating calibrated building energy simulation programs. It begins with reviews of the calibration techniques that have been reported in the previous literature and presents new hourly calibration methods including a temperature bin analysis to improve hourly x−y scatter plots, a 24-hour weather-daytype bin analysis to allow for the evaluation of hourly temperature and schedule dependent comparisons, and a 52-week bin analysis to facilitate the evaluation of long-term trends. In addition, architectural rendering is reviewed as a means of verifying the dimensions of the building envelope and external shading placement as seen by the simulation program. Several statistical methods are also presented that provide goodness-of-fit indicators, including percent difference calculations, mean bias error (MBE), and the coefficient of variation of the root mean squared error (CV(RMSE)). The procedures are applied to a case study building located in Washington, D. C. where nine months of hourly whole-building electricity data and sitespecific weather data were measured and used with the DOE-2.1D building energy simulation program to test the new techniques. Simulations that used the new calibration procedures were able to produce an hourly MBE of –0.7% and a CV(RMSE) of 23.1% which compare favorably with the most accurate hourly neural network models (Kreider and Haberl, 1994a, b).

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 239
Author(s):  
Koldobika Martin-Escudero ◽  
Garazi Atxalandabaso ◽  
Aitor Erkoreka ◽  
Amaia Uriarte ◽  
Matteo Porta

One of the most important steps in the retrofitting process of a building is to understand its pre-retrofitting stage energy performance. The best choice for carrying this out is by means of a calibrated building energy simulation (BES) model. Then, the testing of different retrofitting solutions in the validated model allows for quantifying the improvements that may be obtained, in order to choose the most suitable solution. In this work, based on the available detailed building drawings, constructive details, building operational data and the data sets obtained on a minute basis (for a whole year) from a dedicated energy monitoring system, the calibration of an in-use office building energy model has been carried out. It has been possible to construct a detailed white box model based on Design Builder software. Then, comparing the model output for indoor air temperature, lighting consumption and heating consumption against the monitored data, some of the building envelope parameters and inner building inertia of the model were fine tuned to obtain fits fulfilling the ASHRAE criteria. Problems found during this fitting process and how they are solved are explained in detail. The model calibration is firstly performed on an hourly basis for a typical winter and summer week; then, the whole year results of the simulation are compared against the monitored data. The results show a good agreement for indoor temperature, lighting and heating consumption compared with the ASHRAE criteria for the mean bias error (MBE).


2016 ◽  
Vol 859 ◽  
pp. 88-92 ◽  
Author(s):  
Radu Manescu ◽  
Ioan Valentin Sita ◽  
Petru Dobra

Energy consumption awareness and reducing consumption are popular topics. Building energy consumption counts for almost a third of the global energy consumption and most of that is used for building heating and cooling. Building energy simulation tools are currently gaining attention and are used for optimizing the design for new and existing buildings. For O&M phase in existing buildings, the multiannual average weather data used in the simulation tools is not suitable for evaluating the performance of the building. In this study an existing building was modeled in EnergyPlus. Real on-site weather data was used for the dynamic simulation for the heating energy demand with the aim of comparing the measured energy consumption with the simulated one. The aim is to develop an early fault detection tool for building management.


2001 ◽  
Vol 33 (4) ◽  
pp. 319-331 ◽  
Author(s):  
Drury B. Crawley ◽  
Linda K. Lawrie ◽  
Frederick C. Winkelmann ◽  
W.F. Buhl ◽  
Y.Joe Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document