Heat and Mass Transfer in Packed Bed Liquid Desiccant Regenerators—An Experimental Investigation

1999 ◽  
Vol 121 (3) ◽  
pp. 162-170 ◽  
Author(s):  
V. Martin ◽  
D. Y. Goswami

Liquid desiccant cooling can provide control of temperature and humidity, while at the same time lowering the electrical energy requirement for air conditioning. Since the largest energy requirement associated with desiccant cooling is low temperature heat for desiccant regeneration, the regeneration process greatly influences the overall system performance. Therefore, the effects of variables such as air and desiccant flow rates, air temperature and humidity, desiccant temperature and concentration, and the area available for heat and mass transfer on the regeneration process are of great interest. Due to the complexity of the regeneration process, which involves simultaneous heat and mass transfer, theoretical modeling must be verified by experimental studies. However, a limited number of experimental studies are reported in the literature. This paper presents results from a detailed experimental investigation of the heat and mass transfer between a liquid desiccant (triethylene glycol) and air in a packed bed regenerator using high liquid flow rates. To regenerate the desiccant, it is heated to temperatures readily obtainable from flat-plate solar collectors. A high performance packing that combines good heat and mass transfer characteristics with low pressure drop is used. The rate of water evaporation, as well as the effectiveness of the regeneration process is assessed based on the variables listed above. Good agreement is shown to exist between the experimental findings and predictions from finite difference modeling. In addition, the findings in the present study are compared to findings previously reported In the literature. Also, the results presented here characterize the important variables that impact the system design.

1998 ◽  
Vol 120 (4) ◽  
pp. 289-297 ◽  
Author(s):  
V. O¨berg ◽  
D. Y. Goswami

Desiccant cooling systems have the ability to provide efficient humidity and temperature control while reducing the electrical energy requirement for air conditioning as compared to a conventional system. Naturally, the desiccant air dehumidification process greatly influences the overall performance of the desiccant system. Therefore, the effects of variables such as air and desiccant flow rates, air temperature and humidity, desiccant temperature and concentration, and the area available for heat and mass transfer are of great interest. Due to the complexity of the dehumidification process, theoretical modeling relies heavily upon experimental studies. However, a limited number of experimental studies are reported in the literature. This paper presents results from a detailed experimental investigation of the heat and mass transfer between a liquid desiccant (triethylene glycol) and air in a packed bed absorption tower using high liquid flow rates. A high performance packing that combines good heat and mass transfer characteristics with low pressure drop is used. The rate of dehumidification, as well as the effectiveness of the dehumidification process are assessed based on the variables listed above. Good agreement is shown to exist between the experimental findings and predictions from finite difference modeling. In addition, a comparison between the findings in the present study and findings previously reported in the literature is made. The results obtained from this study make it possible to characterize the important variables which impact the system design.


2020 ◽  
Vol 15 (4) ◽  
pp. 477-495
Author(s):  
Andrew Y A Oyieke ◽  
Freddie L Inambao

Abstract Coupled heat and mass transfer performance of an adiabatic solar-powered liquid desiccant dehumidification and regeneration scheme using lithium bromide(LiBr) solution has been conducted experimentally as well as numerically under subtropical climatic conditions. The application of a vacuum insulated photovoltaic and thermal module to provide desiccant regeneration heat as well as electrical power to drive the air fans and liquid pumps have been explored. A square channelled ceramic cordierite packing with a varying channel density of 20–80 m$^2$/m$^3$ has been used to establish the optimum direct air-LiBr contact ratio for maximum effectiveness. The aggregate crammed vertical dehumidifier and regenerator operational indices featured were effectiveness, moisture removal rate (MRR), heat and mass transfer constants and Lewis number. The influence of solar radiation, humidity and L/G ratios, air–desiccant flow rates and concentration on the indices have been scrutinized in details. A 3D predictive numerical thermal model based on falling liquid stream with constant thickness in counter-flow configuration has been developed and solved by a combination of separative appraisal and stepwise iterative technique. The heat and mass exchange coefficients significantly increased with the increase in Lewis number, air and desiccant flow rates for both the dehumidifier and regenerator vessels. The predicted results of heat and mass transfer coefficients, effectiveness and MRRs have been validated with experimental measurements within a general acceptable conformity of less than $\pm $10%.


Sign in / Sign up

Export Citation Format

Share Document