A Feasibility Space Approach for Automated Tolerancing

1993 ◽  
Vol 115 (3) ◽  
pp. 341-346 ◽  
Author(s):  
J. U. Turner

This paper develops a mathematical theory of tolerances in which tolerance specifications are interpreted as constraints that define a feasible region of a Cartesian space of model variations. Specific examples demonstrate the application of the feasibility space approach to the mathematical interpretation of tolerances of location, orientation, and form. We conclude with the description of an approach to worst-case tolerance analysis, using the feasibility space approach.

Author(s):  
Elisha Sacks ◽  
Leo Joskowicz

Abstract We present an efficient algorithm for worst-case limit kinematic tolerance analysis of planar kinematic pairs with multiple contacts. The algorithm extends computer-aided kinematic tolerance analysis from mechanisms in which parts interact through permanent contacts to mechanisms in which different parts or part features interact at different stages of the work cycle. Given a parametric model of a pair and the range of variation of the parameters, it constructs parametric kinematic models for the contacts, computes the configurations in which each contact occurs, and derives the sensitivity of the kinematic variation to the parameters. The algorithm also derives qualitative variations, such as under-cutting, interference, and jamming. We demonstrate the algorithm on a 26 parameter model of a Geneva mechanism.


Author(s):  
Hua Wang ◽  
Jialei Zhang ◽  
Junyang Yu

Abstract Pneumatic percussive riveting is an important way to join the sheet metals. In order to ensure the load transfer and the fatigue performance of riveted joint, the interference of the rivet/hole is strictly specified. The interference of the rivet/hole is highly correlated with the process capability of the pneumatic hammer and the diameter of the pre-hole. It is a critical step to choose the appropriate pneumatic hammer to ensure the interference requirements. Energy per blow of the pneumatic hammer is a proclaimed parameter from the riveting hammer manufacturer. It is difficult for the designer to choose the riveting hammer in practical riveting scheme based on energy per blow. Tolerance analysis is an efficient way to model the manufacturing variation and implement process control. This paper presents the tolerance allocation of the pneumatic percussive riveting based on the process capability of the pneumatic hammer. In order to obtain the designed interferences of the rivet/hole, a tolerance chain is built with the process capability of the pneumatic hammer, the diameter of the pre-hole and the diameter of the rivet shank. The process capability of the pneumatic hammer is represented with the interferences of the rivet/hole after riveting. It is an intuitive parameter for the designer to choose the riveting hammer in practical riveting scheme. The process capability of the pneumatic hammer is obtained from the designed riveting experiments with the pneumatic percussive riveting platform. The diameter of the pre-hole affects the interference of the rivet/hole also. The tolerance for manual hole-drilling should be determined to assure the interference requirements and high drilling operation efficiency simultaneously. The variation of the pre-hole is obtained from the manual drilling experiments and diameter measurements. Different hole-drilling results in different mating conditions between the pre-hole and the rivet. The fit conditions of different pre-holes are modeled and the final interferences after riveting are analyzed. Worst case method and statistical analysis method are two common methods for tolerance analysis. For the manual hole-drilling and the pneumatic percussive riveting, worst case method is employed to analyze the constructed tolerance chain in order to accomplish the interferences of the rivet/hole. The different analyzed dimensions, rivet-hole clearances and pre-hole drilling variation, are investigated respectively. The reported work enhances the understanding of the tolerance allocation for the pneumatic percussive riveting. The interference based process capability of the pneumatic hammer provides good reference for pneumatic hammer choosing in riveting scheme. The reported tolerance chain of the interference could be used for the tolerance determination of manual hole-drilling with good quality and high efficiency.


Author(s):  
S. H. Mullins ◽  
D. C. Anderson

Abstract Presented is a method for mathematically modeling mechanical component tolerances. The method translates the semantics of ANSI Y14.5M tolerances into an algebraic form. This algebraic form is suitable for either worst-case or statistical tolerance analysis and seeks to satisfy the requirements of both dimensional metrology and design analysis and synthesis. The method is illustrated by application to datum systems, position tolerances, orientation tolerances, and size tolerances.


1987 ◽  
Vol 109 (2) ◽  
pp. 112-116 ◽  
Author(s):  
W. H. Greenwood ◽  
K. W. Chase

Even when all manufactured parts for an assembly are produced within limits, these parts still may not assemble properly if the assembly tolerance analysis was inadequately performed. Naturally occurring shifts in a process can produce biased distributions which can result in increased assembly problems and a greater number of rejects than anticipated. The most common methods of analysis of assembly tolerance buildup are worst case and root sum squares. The limitations of each of these methods are discussed and a simple new method is proposed which accounts for expected bias. This new method includes both worst case and root sum squares as extreme cases.


Author(s):  
Wei Tian ◽  
Xie-Ting Ling ◽  
Ruey-Wen Liu

1988 ◽  
Vol 110 (3) ◽  
pp. 232-235 ◽  
Author(s):  
W. H. Greenwood ◽  
K. W. Chase

When designers assign tolerances on engineering drawings, they have a significant influence on the resulting cost and producibility of manufactured products. A rational basis for assigning tolerances involves constructing mathematical models of tolerance accumulation in assemblies of parts. However, tolerance stacks in two or three-dimensional problems or other nonlinear assembly functions may distort the resultant assembly tolerances, altering the range and symmetry. An iterative method is described for adjusting the nominal dimensions of the component parts such that the specified assembly limits are not violated.


Sign in / Sign up

Export Citation Format

Share Document