mating conditions
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 11)

H-INDEX

9
(FIVE YEARS 1)

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 231
Author(s):  
Melissah Rowe ◽  
Annabel van Oort ◽  
Lyanne Brouwer ◽  
Jan T. Lifjeld ◽  
Michael S. Webster ◽  
...  

Sperm competition is thought to impose strong selection on males to produce competitive ejaculates to outcompete rival males under competitive mating conditions. Our understanding of how different sperm traits influence fertilization success, however, remains limited, especially in wild populations. Recent literature highlights the importance of incorporating multiple ejaculate traits and pre-copulatory sexually selected traits in analyses aimed at understanding how selection acts on sperm traits. However, variation in a male’s ability to gain fertilization success may also depend upon a range of social and ecological factors that determine the opportunity for mating events both within and outside of the social pair-bond. Here, we test for an effect of sperm quantity and sperm size on male reproductive success in the red-back fairy-wren (Malurus melanocephalus) while simultaneously accounting for pre-copulatory sexual selection and potential socio-ecological correlates of male mating success. We found that sperm number (i.e., cloacal protuberance volume), but not sperm morphology, was associated with reproductive success in male red-backed fairy-wrens. Most notably, males with large numbers of sperm available for copulation achieved greater within-pair paternity success. Our results suggest that males use large sperm numbers as a defensive strategy to guard within-pair paternity success in a system where there is a high risk of sperm competition and female control of copulation. Finally, our work highlights the importance of accounting for socio-ecological factors that may influence male mating opportunities when examining the role of sperm traits in determining male reproductive success.


2021 ◽  
Author(s):  
Luis Aniello La Rocca ◽  
Julia Frank ◽  
Heidi Beate Bentzen ◽  
Jean-Tori Pantel ◽  
Konrad Gerischer ◽  
...  

Despite increasing data from population-wide sequencing studies, the risk for recessive disorders in consanguineous partnerships is still heavily debated. An important aspect that has not sufficiently been investigated theoretically, is the influence of inbreeding on mutation load and incidence rates when the population sizes change. We therefore developed a model to study these dynamics for a wide range of growth and mating conditions. In the phase of population expansion and shortly afterwards, our simulations show that there is a drop of diseased individuals at the expense of an increasing mutation load for random mating, while both parameters remain almost constant in highly consanguineous partnerships. This explains the empirical observation in present times that a high degree of consanguinity is associated with an increased risk of autosomal recessive disorders. However, it also states that the higher frequency of severe recessive disorders with developmental delay in inbred populations is a transient phenomenon before a mutation-selection balance is reached again.


2021 ◽  
Author(s):  
Sulagna Mishra ◽  
Thomas U Berendonk ◽  
David Kneis

The spread of antibiotic resistance genes (ARG) occurs widely through plasmid transfer majorly facilitated via bacterial conjugation. To assess the spread of these mobile ARG, it is necessary to develop appropriate tools to estimate plasmid transfer rates under different environmental conditions. Process-based models are widely used for the estimation of plasmid transfer rate constants. Empirical studies have repeatedly highlighted the importance of subtle processes like delayed growth, the maturation of transconjugants, the physiological cost of plasmid carriage, and the dependence of conjugation on the culture′s growth stage. However, models used for estimating the transfer rates typically neglect them. We conducted virtual mating experiments to quantify the impact of these four typical structural model deficits on the estimated plasmid transfer rate constants. We found that under all conditions, the plasmid cost and the lag phase in growth must be taken into account to obtain unbiased estimates of plasmid transfer rate constants. We observed a tendency towards the underestimation of plasmid transfer rate constants when structurally deficient models were fitted to virtual mating data. This holds for all the structural deficits and mating conditions tested in our study. Our findings might explain an important component of the negative bias in model predictions known as the plasmid paradox. We also discuss other structural deficits that could lead to an overestimation of plasmid transfer rate constants and we demonstrate the impact of ill-fitted parameters on model predictions.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Andrea M. Makkay ◽  
Artemis S. Louyakis ◽  
Nikhil Ram-Mohan ◽  
Uri Gophna ◽  
J. Peter Gogarten ◽  
...  

AbstractHorizontal gene transfer is a means by which bacteria, archaea, and eukaryotes are able to trade DNA within and between species. While there are a variety of mechanisms through which this genetic exchange can take place, one means prevalent in the archaeon Haloferax volcanii involves the transient formation of cytoplasmic bridges between cells and is referred to as mating. This process can result in the exchange of very large fragments of DNA between the participating cells. Genes governing the process of mating, including triggers to initiate mating, mechanisms of cell fusion, and DNA exchange, have yet to be characterized. We used a transcriptomic approach to gain a more detailed knowledge of how mating might transpire. By examining the differential expression of genes expressed in cells harvested from mating conditions on a filter over time and comparing them to those expressed in a shaking culture, we were able to identify genes and pathways potentially associated with mating. These analyses provide new insights into both the mechanisms and barriers of mating in Hfx. volcanii.


Author(s):  
Hua Wang ◽  
Jialei Zhang ◽  
Junyang Yu

Abstract Pneumatic percussive riveting is an important way to join the sheet metals. In order to ensure the load transfer and the fatigue performance of riveted joint, the interference of the rivet/hole is strictly specified. The interference of the rivet/hole is highly correlated with the process capability of the pneumatic hammer and the diameter of the pre-hole. It is a critical step to choose the appropriate pneumatic hammer to ensure the interference requirements. Energy per blow of the pneumatic hammer is a proclaimed parameter from the riveting hammer manufacturer. It is difficult for the designer to choose the riveting hammer in practical riveting scheme based on energy per blow. Tolerance analysis is an efficient way to model the manufacturing variation and implement process control. This paper presents the tolerance allocation of the pneumatic percussive riveting based on the process capability of the pneumatic hammer. In order to obtain the designed interferences of the rivet/hole, a tolerance chain is built with the process capability of the pneumatic hammer, the diameter of the pre-hole and the diameter of the rivet shank. The process capability of the pneumatic hammer is represented with the interferences of the rivet/hole after riveting. It is an intuitive parameter for the designer to choose the riveting hammer in practical riveting scheme. The process capability of the pneumatic hammer is obtained from the designed riveting experiments with the pneumatic percussive riveting platform. The diameter of the pre-hole affects the interference of the rivet/hole also. The tolerance for manual hole-drilling should be determined to assure the interference requirements and high drilling operation efficiency simultaneously. The variation of the pre-hole is obtained from the manual drilling experiments and diameter measurements. Different hole-drilling results in different mating conditions between the pre-hole and the rivet. The fit conditions of different pre-holes are modeled and the final interferences after riveting are analyzed. Worst case method and statistical analysis method are two common methods for tolerance analysis. For the manual hole-drilling and the pneumatic percussive riveting, worst case method is employed to analyze the constructed tolerance chain in order to accomplish the interferences of the rivet/hole. The different analyzed dimensions, rivet-hole clearances and pre-hole drilling variation, are investigated respectively. The reported work enhances the understanding of the tolerance allocation for the pneumatic percussive riveting. The interference based process capability of the pneumatic hammer provides good reference for pneumatic hammer choosing in riveting scheme. The reported tolerance chain of the interference could be used for the tolerance determination of manual hole-drilling with good quality and high efficiency.


2020 ◽  
Author(s):  
Andrea M. Makkay ◽  
Artemis S. Louyakis ◽  
Nikhil Ram-Mohan ◽  
Uri Gophna ◽  
J. Peter Gogarten ◽  
...  

AbstractHorizontal gene transfer is a means by which bacteria, archaea, and eukaryotes are able to trade DNA within and between species. While there are a variety of mechanisms through which this genetic exchange can take place, one means prevalent in the archaeon Haloferax volcanii involves the transient formation of cytoplasmic bridges between cells and is referred to as mating. This process can result in the exchange of very large fragments of DNA between the participating cells. Genes governing the process of mating, including triggers to initiate mating, mechanisms of cell fusion, and DNA exchange, have yet to be characterized. We used a transcriptomic approach to gain a more detailed knowledge of how mating might transpire. By examining the differential expression of genes expressed in cells harvested from mating conditions on a filter over time and comparing them to those expressed in a shaking culture, we were able to identify genes and pathways potentially associated with mating. These analyses provide new insights into both the mechanisms and barriers of mating in Hfx. volcanii.


2020 ◽  
Vol 20 (3) ◽  
Author(s):  
Lina Heistinger ◽  
Brigitte Gasser ◽  
Diethard Mattanovich

ABSTRACT Yeast mating pheromones are small secreted peptides required for efficient mating between cells of opposite mating type. Pheromone gradients allow the cells to detect potential mating partners. Secreted pheromone degrading proteases steepen local gradients and allow fast recovery from the pheromone signal. The methylotrophic yeast Komagataella phaffii is a preferentially haploid species. Only under nitrogen starvation, mating genes are activated and the cells are able to undergo a full sexual cycle of mating and sporulation. It has been shown that, similar to other yeasts, K. phaffii requires the mating pheromone and pheromone surface receptor genes for efficient mating. The analysis of so far uncharacterized mating-type-specific genes allowed us to identify the K. phaffii α-factor protease gene YPS1–5. It encodes an aspartic protease of the yapsin family and is upregulated only in a-type cells under mating conditions. The phenotype of K. phaffiia-type strains with a deletion in the protease gene was found to be highly similar to the phenotype of Saccharomyces cerevisiae α-factor protease BAR1 deletion strains. They are highly sensitive to α-factor pheromone in pheromone sensitivity assays and were found to mate with reduced efficiency. Based on our results, we propose to rename the gene into K. phaffii BAR1.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Diego Peres Alonso ◽  
Melina Campos ◽  
Heitor Troca ◽  
Rafael Kunii ◽  
Frédéric Tripet ◽  
...  

Abstract Aedes aegypti is the most synanthropic and anthropophilic mosquito of Culicidae. This species always cohabits with humans and is extremely opportunistic. Vector dispersal is directly related to the ability of the females on successfully finding a mate in a generally patchy urban scenario. In the present work, we investigate transcriptional changes in Ae. aegypti females during the courtship process and after mating. We observe a substantial alteration in gene expression triggered just upon contact with Ae. aegypti males, which in turn was not fully correlated to the changes triggered by the contact. After analysing shared significant differentially regulated genes between conspecific contact and insemination, the major part of the observed transcriptomic change triggered by contact is reversed after mating, indicating an intermediary situation between naive and mating conditions that we hypothesize to be crucial for mating success. Upon contact, several chemosensory related genes are repressed, especially odorant binding proteins. Most of these genes return to higher expression rates after mating. None of these genes are significantly regulated by the encounter of a different species, Aedes albopictus. The results presented here might be applied to an innovative control approach focusing on the semiochemical systems of mosquitoes in an effort to disrupt undesirable host–insect interaction to reduce the risk of pathogen transmission to humans.


2019 ◽  
Vol 286 (1904) ◽  
pp. 20190591 ◽  
Author(s):  
Alima Qureshi ◽  
Andrew Aldersley ◽  
Brian Hollis ◽  
Alongkot Ponlawat ◽  
Lauren J. Cator

Aedes aegypti is an important disease vector and a major target of reproductive control efforts. We manipulated the opportunity for sexual selection in populations of Ae . aegypti by controlling the number of males competing for a single female. Populations exposed to higher levels of male competition rapidly evolved higher male competitive mating success relative to populations evolved in the absence of competition, with an evolutionary response visible after only five generations. We also detected correlated evolution in other important mating and life-history traits, such as acoustic signalling, fecundity and body size. Our results indicate that there is ample segregating variation for determinants of male mating competitiveness in wild populations and that increased male mating success trades-off with other important life-history traits. The mating conditions imposed on laboratory-reared mosquitoes are likely a significant determinant of male mating success in populations destined for release.


Sign in / Sign up

Export Citation Format

Share Document