Review of Methanol and Compressed Natural Gas (CNG) as Alternative for Transportation Fuels

1991 ◽  
Vol 113 (2) ◽  
pp. 101-107 ◽  
Author(s):  
P. Gandhidasan ◽  
A. Ertas ◽  
E. E. Anderson

Concern over the environment and a potential oil shortage has resulted in an intensified research for alternative fuels for the transportation sector. Two fuels given strong consideration are methanol and compressed natural gas (CNG). This paper is a comprehensive comparative study of methanol and CNG as transportation fuels. The physical properties of methanol and CNG are discussed. The various concerns, such as source and potential fuel supply, safety, toxicity and health hazards, engine performance and emissions, fuel storage, fuel tank and refueling of these alternative fuels are addressed briefly in this paper. We find that no single alternative fuel is best in all categories. The merits and drawbacks of each fuel are tabulated and the vehicle characteristics are compared with gasoline. The study concludes that the neat methanol may be considered as an alternative for passenger cars and CNG may be considered for fleets, light and heavy-duty vehicles as the best near-term solution.

2020 ◽  
Vol 18 (2) ◽  
pp. 108-112
Author(s):  
Ashok Kumar ◽  
Piyushi Nautiyal ◽  
Kamalasish Dev

The present study is investigated on the performance and emissions characteristics of a diesel engine fuelled by compressed natural gas and base diesel (CNG + Diesel). The CNG fuels used as the primary fuel, and diesel as pilot fuel under dual-fuel mode. The pilot fuel is partially replaced by CNG at a different percentage. The primary fuel is injected into the engine with intake air during the suction stroke. The experimental results reveal the effect of CNG + diesel under dual fuel mode on BTE, BSFC, CO, CO2, HC, NOx and Smoke. It is observed from the experimental results that CO2, NOx and Smoke emissions decreased but HC and CO emissions increase with an increase in CNG energy share.


2000 ◽  
Vol 122 (4) ◽  
pp. 617-623 ◽  
Author(s):  
Jack A. Smith ◽  
Gordon J. J. Bartley

This paper presents the results from an internal research study conducted at the Southwest Research Institute (SwRI) on the effects of stoichiometric mixtures of natural gas and synthesis gas with exhaust gas recirculation (EGR) on engine performance and exhaust emissions. Constant load performance and emissions tests were conducted on a modified, single-cylinder, Caterpillar 1Y540 research engine at 11.0 bar (160 psi) bmep. Engine performance and emissions comparisons between natural gas with EGR, and natural gas with syngas and EGR are presented. In addition, the performance characteristics of the fuel reforming catalyst are presented. Results show that thermal efficiency increases with increasing EGR for both natural gas operation and natural gas with syngas operation at constant load. The use of syngas with natural gas extended the EGR tolerance by 44.4 percent on a mass basis compared to natural gas only, leading to a 77 percent reduction in raw NOx emissions over the lowest natural gas with EGR NOx emissions. [S0742-4795(00)00504-4]


Author(s):  
Bipin Bihari ◽  
Munidhar S. Biruduganti ◽  
Roberto Torelli ◽  
Dan Singleton

Lean-burn combustion dominates the current reciprocating engine R&D efforts due to its inherent benefits of high BTE and low emissions. The ever-increasing push for high power densities necessitates high boost pressures. Therefore, the reliability and durability of ignition systems face greater challenges. In this study, four ignition systems, namely, stock Capacitive discharge ignition (CDI), Laser ignition, Flame jet ignition (FJI), and Nano-pulse delivery (NPD) ignition were tested using a single cylinder natural gas engine. Engine performance and emissions characteristics are presented highlighting the benefits and limitations of respective ignition systems. Optical tools enabled delving into the ignition delay period and assisted with some characterization of the spark and its impact on subsequent processes. It is evident that advanced ignition systems such as Lasers, Flame-jets and Nano-pulse delivery enable extension of the lean ignition limits of fuel/air mixtures compared to base CDI system.


2020 ◽  
Vol 12 (6) ◽  
pp. 168781402093045
Author(s):  
Muhammad Usman ◽  
Muhammad Wajid Saleem ◽  
Syed Saqib ◽  
Jamal Umer ◽  
Ahmad Naveed ◽  
...  

Considering the importance of alternative fuels in IC engines for environment safety, compressed natural gas has been extensively employed in SI engines. However, scarce efforts have been made to investigate the effect of compressed natural gas on engine lubricant oil for a long duration. In this regard, a comprehensive analysis has been made on the engine performance, emissions, and lubricant oil conditions using gasoline ( G)92 and compressed natural gas at different operating conditions using reliable sampling methods. The key parameters of the engine performance like brake power and brake-specific energy consumption were investigated at 80% throttle opening within 1500–4500 range of r/min. For the sake of emission tests, speed was varied uniformly by varying the load at a constant throttle. Furthermore, the engine was run at high and low loads for lubricant oil comparison. Although compressed natural gas showed a decrease in brake-specific energy consumption (7.94%) and emissions content, ( G)92 performed relatively better in the case of brake power (39.93% increase). Moreover, a significant improvement was observed for wear debris, lubricant oil physiochemical characteristics, and additives depletion in the case of compressed natural gas than those of ( G)92. The contents of metallic particles were decreased by 23.58%, 36.25%, 42.42%, and 66.67% for iron, aluminum, copper, and lead, respectively, for compressed natural gas.


Sign in / Sign up

Export Citation Format

Share Document