To Study the Effects of (Compressed Natural Gas + Diesel) Under Dual Fuel Mode on Engine Performance and Emissions Characteristic

2020 ◽  
Vol 18 (2) ◽  
pp. 108-112
Author(s):  
Ashok Kumar ◽  
Piyushi Nautiyal ◽  
Kamalasish Dev

The present study is investigated on the performance and emissions characteristics of a diesel engine fuelled by compressed natural gas and base diesel (CNG + Diesel). The CNG fuels used as the primary fuel, and diesel as pilot fuel under dual-fuel mode. The pilot fuel is partially replaced by CNG at a different percentage. The primary fuel is injected into the engine with intake air during the suction stroke. The experimental results reveal the effect of CNG + diesel under dual fuel mode on BTE, BSFC, CO, CO2, HC, NOx and Smoke. It is observed from the experimental results that CO2, NOx and Smoke emissions decreased but HC and CO emissions increase with an increase in CNG energy share.

2021 ◽  
pp. 1-25
Author(s):  
Chandrakanta Nayak ◽  
Bhabani Prasanna Pattanaik ◽  
Jibitesh Kumar Panda

Abstract Experiments are performed on a diesel engine working in single fuel mode using fossil diesel (FD) as well as 5% and 10% (v/v) di-ethyl ether (DEE) additives with FD as fuels as well as in dual fuel mode using the above fuels as pilot fuels along with producer gas (PG) as primary fuel. This study aims to draw comparative analyses of engine combustion, performance and emission characteristics using the above fuel combinations to establish the most suitable fuel strategy for a diesel engine. The study revealed greater control over nitric oxide (NO) and smoke opacity in dual fuel mode compared to single fuel mode operations. Addition of DEE with FD, produced lower HC and CO emissions, comparable NO emissions along with reduced smoke opacity compared to FD in both modes of operation. Further, in dual fuel mode operation, the diesel percentage energy substitution (PES) reduced with increase in DEE content in the blends. The tradeoff study involving engine performance and emissions with respect to the cost of operation revealed that the fuel strategy used in dual fuel mode operation delivered better engine performance along with reduced NO emission and smoke opacity at lower operational cost compared to all the considered fuel strategy in single fuel mode operation. Especially, FD+5% DEE+PG and FD+10% DEE+PG fuel strategies were found to be the most suitable dual fuel mode combinations in a diesel engine in terms of their superior engine performance, lower emissions along with better economy.


2014 ◽  
Vol 70 (1) ◽  
Author(s):  
A. Supee ◽  
R. Mohsin ◽  
Z. A. Majid ◽  
M. I. Raiz

In Diesel-CNG (Compressed Natural Gas) Dual Fuel (DDF) system, CNG is generally inducted in the intake manifold by CNG injector which is mounted on the intake manifold whereas diesel fuel is directly injected into engine cylinder using existing diesel fuel injector system. Status quo of optimum CNG injector position on intake manifold will  provide better gaseous fuel mixing quality, produce high turbulence kinetic energy and thus improve the performance of the diesel engine under DDF system. Thus, under full load condition at 2750 rpm, the engine performance and exhaust gas emissions tests such as nitric oxides (NOx), carbon dioxide (CO2), carbon monoxide (CO) and hydrocarbon (HC) were conducted on a diesel engine under DDF system for optimization of CNG injector position. Four CNG injector position on intake manifold were selected and optimum position of CNG injector was found to be at "position 2" which results in higher power output and less exhaust gas emissions. Further analysis by Computational Fluid Dynamics (CFD) shows that CNG injector at "position 2" exhibit better quality of homogeneous CNG-air mixture and higher turbulence kinetic energy compared to other position. Based on the findings, an optimization of CNG injector position on intake manifold provide promising modification method due to the simple, cheaper and commercially acceptable.


Author(s):  
N. Kapilan ◽  
Chandramohan Somayaji ◽  
P. Mohanan ◽  
R. P. Reddy

In the present work, an attempt has been made for the effective utilization of Compressed Natural Gas (CNG) in diesel engine. A four stroke, single cylinder diesel engine was modified to work on dual fuel mode. The effect of CNG flow rate and Exhaust Gas Recirclulation (EGR) on the performance and emissions of the dual fuel engine was studied. The variables considered for the tests were different CNG flow rates (0.2, 0.3, 0.4, 0.5, 0.6 and 0.7 kg/hr), EGR (0 %, 4.28 %, 6.63 % and 8.12 %) and loads (25 %, 50 %, 75 % and 100 % of full load). From the test results, it was observed that the EGR rate of 4.28 % results in better brake thermal efficiency and lower CO and NOx emissions than other ERG rates at 25 %, 50% and 75% of full loads. At full load, EGR rate of 8.12 % results in higher brake thermal efficiency and lower NOx emissions.


1991 ◽  
Vol 113 (2) ◽  
pp. 101-107 ◽  
Author(s):  
P. Gandhidasan ◽  
A. Ertas ◽  
E. E. Anderson

Concern over the environment and a potential oil shortage has resulted in an intensified research for alternative fuels for the transportation sector. Two fuels given strong consideration are methanol and compressed natural gas (CNG). This paper is a comprehensive comparative study of methanol and CNG as transportation fuels. The physical properties of methanol and CNG are discussed. The various concerns, such as source and potential fuel supply, safety, toxicity and health hazards, engine performance and emissions, fuel storage, fuel tank and refueling of these alternative fuels are addressed briefly in this paper. We find that no single alternative fuel is best in all categories. The merits and drawbacks of each fuel are tabulated and the vehicle characteristics are compared with gasoline. The study concludes that the neat methanol may be considered as an alternative for passenger cars and CNG may be considered for fleets, light and heavy-duty vehicles as the best near-term solution.


Author(s):  
C. M. Gibson ◽  
A. C. Polk ◽  
N. T. Shoemaker ◽  
K. K. Srinivasan ◽  
S. R. Krishnan

With increasingly restrictive NOx and PM emissions standards, the recent discovery of new natural gas reserves, and the possibility of producing propane efficiently from biomass sources, dual fueling strategies have become more attractive. This paper presents experimental results from dual-fueling a four-cylinder turbocharged DI diesel engine with propane or methane (a natural gas surrogate) as the primary fuel and diesel as the ignition source. Experiments were performed with the stock ECU at a constant speed of 1800 rev/min, and a wide range of BMEPs (2.7 to 11.6 bar) and percent energy substitutions (PES) of C3H8 and CH4. Brake thermal efficiencies (BTE) and emissions (NOx, smoke, THC, CO, and CO2) were measured. Maximum PES levels of about 80–95 percent with CH4 and 40–92 percent with C3H8 were achieved. Maximum PES was limited by poor combustion efficiencies and engine misfire at low loads for both C3H8 and CH4, and the onset of knock above 9 bar BMEP for C3H8. While dual fueling BTEs were lower than straight diesel BTEs at low loads, they approached diesel BTE values at high loads. With dual fueling, NOx and smoke reductions (from diesel values) were as high as 66–68 percent and 97 percent, respectively, but CO and THC emissions were significantly higher with increasing PES at all engine loads.


Author(s):  
Roussos G. Papagiannakis ◽  
Theodoros C. Zannis ◽  
Elias A. Yfantis ◽  
Dimitrios T. Hountalas

The simultaneous reduction of nitrogen oxide emissions and particulate matter in a compression ignition environment is quite difficult due to the soot/NOx trade off and it is often accompanied by fuel consumption penalties. Thus, fuel reformulation is also essential for the curtailment of diesel pollutant emissions along with the optimization of combustion-related design factors and exhaust after-treatment equipment. Various solutions have been proposed for improving the combustion process of conventional diesel engines and reducing the exhaust emissions without making serious modifications on the engine, one of which is the use of natural gas as a supplement for the conventional diesel fuel (Dual Fuel Natural Gas/Diesel Engines). Natural gas is considered to be quite promising since its cost is relative lower compared to conventional fuels and it has high auto-ignition temperature compared to other gaseous fuels facilitating thus its use on future and existing fleet of small high speed direct injection diesel engines without serious modifications on their structure. Moreover, natural gas does not generate particulates when burned in engines. The most common natural gas/diesel operating mode is referred to as the Pilot Ignited Natural Gas Diesel Engine (P.I.N.G.D.E). Here, the primary fuel is natural gas that controls the engine power output, while the pilot diesel fuel injected near the end of the compression stroke autoignites and creates ignition sources for the surrounding gaseous fuel mixture to be burned. Previous research studies have shown that the main disadvantage of this dual fuel combustion is its negative impact on engine efficiency compared to the normal diesel operation, while carbon monoxide emissions are also increased. The specific engine operating mode, in comparison with conventional diesel fuel operation, suffers from low brake engine efficiency and high carbon monoxide (CO) emissions. The influence becomes more evident at part load conditions. Intake charge temperature, pilot fuel quantity and injection advance are some of the engine parameters which influence significantly the combustion mechanism inside the combustion chamber of a Pilot Ignited Natural Gas Diesel Engine. In order to be examined the effect of these parameters on performance and exhaust emissions of a natural gas/diesel engine a theoretical investigation has been conducted by using a numerical simulation. In order to be examined the effect of increased air inlet temperature combined with increased pilot fuel quantity and its injection timing on performance and exhaust emissions of a pilot ignited natural gas-diesel engine, a theoretical investigation has been conducted by using a comprehensive two-zone phenomenological model. The results concerning engine performance characteristics and NO, CO and Soot emissions for various engine operating conditions (i.e. load and engine speed), comes from the employment of a comprehensive two-zone phenomenological model which had been applied on a high-speed natural gas/diesel engine. The main objectives of this comparative assessment are to record and to comparatively evaluate the relative impact each one of the above mentioned parameters on engine performance characteristics and emitted pollutants. Furthermore, the present investigation deals with the determining of optimum combinations between the parameters referred before since at high engine load conditions, the simultaneous increase some of the specific parameters may lead in undesirable results about engine performance characteristics. The conclusions of the specific investigation will be extremely valuable for the application of this technology on existing DI diesel engines.


Sign in / Sign up

Export Citation Format

Share Document