Heat Exchange Effectiveness and Pressure Drop for Air Flow Through Perforated Plates With and Without Crosswind

1994 ◽  
Vol 116 (2) ◽  
pp. 391-399 ◽  
Author(s):  
C. F. Kutscher

Low-porosity perforated plates are being used as absorbers for heating ambient air in a new type of unglazed solar collector. This paper investigates the convective heat transfer effectiveness for low-speed air flow through thin, isothermal perforated plates with and without a crosswind on the upstream face. The objective of this work is to provide information that will allow designers to optimize hole size and spacing. In order to obtain performance data, a wind tunnel and small lamp array were designed and built. Experimental data were taken for a range of plate porosities from 0.1 to 5 percent, hole Reynolds numbers from 100 to 2000, and wind speeds from 0 to 4 m/s. Correlations were developed for heat exchange effectiveness and also for pressure drop. Infrared thermography was used to visualize the heat transfer taking place at the surface.

2011 ◽  
Vol 18 (6) ◽  
pp. 491-502 ◽  
Author(s):  
Andrew Mintu Sarkar ◽  
M. A. Rashid Sarkar ◽  
Mohammad Abdul Majid

Author(s):  
Ignacio Carvajal-Mariscal ◽  
Florencio Sanchez-Silva ◽  
Georgiy Polupan

In this work the heat transfer and pressure drop experimental results obtained in a two step finned tube bank with conical fins are presented. The tube bank had an equilateral triangle array composed of nine finned tubes with conical fins inclined 45 degrees in respect with the tube axis. The heat exchange external area of a single tube is approximately 0.07 m2. All necessary thermal parameters, inlet/outlet temperatures, mass flows, for the heat balance in the tube bank were determined for different air velocities, Re = 3400–18400, and one constant thermal charge provided by a hot water flow with a temperature of 80 °C. As a result, the correlations for the heat transfer and pressure drop calculation were obtained. The experimental results were compared against the analytical results for a tube bank with annular fins with the same heat exchange area. It was found that the proposed tube bank using finned tubes with conical fins shows an increment of heat transfer up to 58%.


Sign in / Sign up

Export Citation Format

Share Document