A New Dynamic Basis Algorithm for Solving Linear Programming Problems for Engineering Design

1990 ◽  
Vol 112 (2) ◽  
pp. 208-214 ◽  
Author(s):  
Y. Wang ◽  
E. Sandgren

A new linear programming algorithm is proposed which has significant advantages compared to a traditional simplex method. A search direction is generated along a common edge of the active constraint set. This direction is followed in order to identify candidate constraints and to modify the current basis. The dimension of the basis matrix begins with a single element and dynamically increases but remains less than or equal to the number of design variables. This is true regardless of the number of inequality constraints present including upper and lower bounds. The proposed method can operate equally well from a feasible or infeasible point. The pivot operation and artificial variable strategy of the simplex method are not used. Examples are presented and results are compared to those generated by a traditional revised simplex algorithm. Extensions are presented for both exterior and interior versions of the approach.

Author(s):  
Y. Wang ◽  
E. Sandgren

Abstract A new linear programming algorithm is proposed which has significant advantages compared to the traditional simplex method. The search direction generated which is always along a common edge of the active constraint set, is used to locate candidate constraints, and can be used to modify the current basis. The dimension of the basis begins at one and dynamically increases but remains less than or equal to the number of design variables. This is true regardless of the number of inequality constraints present including upper and lower bounds. The proposed method can operate equally well from a feasible or infeasible point. The pivot operation and artificial variable strategy of the simplex method are not used. Examples are presented and results are compared with a traditional revised simplex method.


2012 ◽  
Vol 60 (2) ◽  
pp. 163-168 ◽  
Author(s):  
S. M. Atiqur Rahman Chowdhury ◽  
Sanwar Uddin Ahmad

Linear Programming problem (LPP)s with upper bounded variables can be solved using the Bounded Simplex method (BSM),without the explicit consideration of the upper bounded constraints. The upper bounded constraints are considered implicitly in this method which reduced the size of the basis matrix significantly. In this paper, we have developed MATHEMATICA codes for solving such problems. A complete algorithm of the program with the help of a numerical example has been provided. Finally a comparison with the built-in code has been made for showing the efficiency of the developed code.DOI: http://dx.doi.org/10.3329/dujs.v60i2.11487 Dhaka Univ. J. Sci. 60(2): 163-168, 2012 (July)


2012 ◽  
Vol 532-533 ◽  
pp. 1626-1630
Author(s):  
Guo Guang Zhang

Simplex method is one of the most useful methods to solve linear program. However, before using the simplex method, it is required to have a base feasible solution of linear program and the linear program is changed to thetypical form. Although there are some methods to gain the base feasible solution of linear program, artificial variablesare added and the times of calculating are increased with these calculations. In this paper, an extended algorithm of the simplex algorithm is established, the definition of feasible solution in the new algorithm is expended, the test number is not the same sign in the process of finding problem solution. Explained the principle of the new algorithm and showed results of LP problems calculated by the new algorithm.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 356
Author(s):  
Rujira Visuthirattanamanee ◽  
Krung Sinapiromsaran ◽  
Aua-aree Boonperm

An enthusiastic artificial-free linear programming method based on a sequence of jumps and the simplex method is proposed in this paper. It performs in three phases. Starting with phase 1, it guarantees the existence of a feasible point by relaxing all non-acute constraints. With this initial starting feasible point, in phase 2, it sequentially jumps to the improved objective feasible points. The last phase reinstates the rest of the non-acute constraints and uses the dual simplex method to find the optimal point. The computation results show that this method is more efficient than the standard simplex method and the artificial-free simplex algorithm based on the non-acute constraint relaxation for 41 netlib problems and 280 simulated linear programs.


Author(s):  
Nirmal Kumar Mahapatra ◽  
Tuhin Bera

In this chapter, the concept of single valued neutrosophic number (SVN-Number) is presented in a generalized way. Using this notion, a crisp linear programming problem (LP-problem) is extended to a neutrosophic linear programming problem (NLP-problem). The coefficients of the objective function of a crisp LP-problem are considered as generalized single valued neutrosophic number (GSVN-Number). This modified form of LP-problem is here called an NLP-problem. An algorithm is developed to solve NLP-problem by simplex method. Finally, this simplex algorithm is applied to a real-life problem. The problem is illustrated and solved numerically.


Author(s):  
Chandra Sen

An excellent research contribution was made by Sanjay and Adarsh in using Gauss Elimination Technique and AHA simplex method for solving multi-objective optimization (MOO) problems. The method was applied for solving MOO problems using Chandra Sen's technique and several other averaging techniques. The formulation of multi-objective function in the averaging techniques was not perfect. The example was also not appropriate.


Author(s):  
Elsayed Metwalli Badr ◽  
Mustafa Abdul Salam ◽  
Florentin Smarandache

The neutrosophic primal simplex algorithm starts from a neutrosophic basic feasible solution. If there is no such a solution, we cannot apply the neutrosophic primal simplex method for solving the neutrosophic linear programming problem. In this chapter, the authors propose a neutrosophic two-phase method involving neutrosophic artificial variables to obtain an initial neutrosophic basic feasible solution to a slightly modified set of constraints. Then the neutrosophic primal simplex method is used to eliminate the neutrosophic artificial variables and to solve the original problem.


Liquidity ◽  
2018 ◽  
Vol 2 (1) ◽  
pp. 59-65 ◽  
Author(s):  
Yanti Budiasih

The purpose of this study are to (1) determine the combination of inputs used in producing products such as beef sausages and veal sausage meatball; and (2) determine the optimal combination whether the product can provide the maximum profit. In order to determine the combination of inputs and maximum benefits can be used linear programming with graphical and simplex method. The valuation result shows that the optimal input combination would give a profit of Rp. 1.115 million per day.


Sign in / Sign up

Export Citation Format

Share Document